Skip to main content

Chapter 5 The 1980s: Heady Times

  • Chapter
  • First Online:
Book cover Impactful Times

Part of the book series: Shock Wave and High Pressure Phenomena ((SHOCKWAVE))

  • 763 Accesses

Abstract

The previous two decades of shock wave research at Sandia led to (1) advances in experimental techniques, (2) measurements of dynamic material response for a wide range of materials, (3) state-of-the-art material models, and (4) a family of 1-D and 2-D computer codes that could simulate materials used in weapon components and subsystems with considerable accuracy. However, full three-dimensional (3-D) code capabilities were needed for higher fidelity simulations of weapon components and subsystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In 2015, Rottler was again promoted, that time to the Deputy Laboratories Director and the Executive Vice President for Nuclear Security at Sandia.

  2. 2.

    For additional information about this conventional weapon analysis project, see Marlin Kipp’s recollection.

References

  • M.U. Anderson, L.C. Chhabildas, W.D. Reinhart, Simultaneous PVDF/VISAR measurement technique for isentropic loading with graded density impactors, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by S.C. Schmidt, D.P. Dandekar, J.W. Forbes, vol. 429 (AIP, College Park, MD, 1998), pp. 841–844

    Google Scholar 

  • J.A. Ang, Impact flash jet initiation phenomenology. Int. J. Impact Eng. 10, 23–33 (1990)

    Article  Google Scholar 

  • J.A. Ang, L.C. Chhabildas, B.G. Cour-Palais, E.L. Christiansen, J.L. Crews, Evaluation of Whipple bumper shields at 7 and 10 km/s. AIAA Paper No. 92–1590, 1–4 (1991)

    Google Scholar 

  • J.A. Ang, C.H. Konrad, C.A. Hall, A.R. Susoeff, R.S. Hawke, G.L. Sauve, A.R. Vasey, S.M. Gosling, R.J. Hickman, Hypervelocity projectile design and fabrication. IEEE Transactions on Magnetics 29(1), 722–727 (1993a)

    Article  Google Scholar 

  • J.R. Asay, J. Lipkin, A self-consistent technique for estimating the dynamic strength of a shock-loaded material. J. Appl. Phys. 49, 4242–4247 (1978)

    Article  Google Scholar 

  • J.R. Asay, L.C. Chhabildas, Determination of the shear strength of shock-compressed 6061-T6 aluminum, in Shock waves and high-strain-rate phenomena in metals, ed. by M.A. Myers, L.E. Murr (Plenum, New York, NY, 1981), pp. 417–424

    Chapter  Google Scholar 

  • J.R. Asay, T.G. Trucano, L.C. Chhabildas, Time-resolved measurements of shock-induced vapor-pressure profiles, in Shock Waves in Condensed Matter, ed. by S.C. Schmidt, N.C. Holmes (Elsevier, Amsterdam, 1988), pp. 159–162

    Google Scholar 

  • J.R. Asay, M.D. Knudson, Use of pulsed magnetic fields for quasi-isentropic compression experiments, in High Pressure Shock Compression of Solids VIII, ed. by L.C. Chhabildas, L.W. Davison, Y. Horie (Springer, New York, NY, 2005), pp. 329–380

    Chapter  Google Scholar 

  • J.R. Asay, T. Ao, T.J. Vogler, J.-P. Davis, G.T. Gray, Yield strength of tantalum for shockless compression to 18 GPa. J. Appl. Phys. 106, 073515 (2009)

    Article  Google Scholar 

  • M.R. Baer, J.W. Nunziato, A theory for Deflagration-to-Detonation Transition (DDT) in Granular Explosives. Sandia National Laboratories Report SAND82-0293 (Sandia National Laborator, Albuquerque, NM, 1983)

    Google Scholar 

  • M.R. Baer, J.W. Nunziato, A Two-Phase Mixture Theory for the Deflagration-to-Detonation Transition (DDT) in Reactive Granular Materials. Int. J. Multiphase Flow 12(6), 861–889 (1986)

    Article  MATH  Google Scholar 

  • M.R. Baer, J.W. Nunziato, Compressive combustion of granular materials induced by low velocity impact, in Proceedings of the 9th International Detonation Symposium Office of Naval Research Report ONR 113291-7:293-305, ed. by J.M. Short, E.L. Lee (Office of Naval Research, San Diego, CA, 1989)

    Google Scholar 

  • M.R. Baer, E.S. Hertel Jr., R.L. Bell, Multidimensional DDT modeling of energetic materials, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by S.C. Schmidt, W.C. Tao, vol. 370 (AIP, College Park, MD, 1996a), pp. 433–436

    Google Scholar 

  • L.M. Barker, R.E. Hollenbach, Shock wave studies of PMMA, fused silica, and sapphire. J. Appl. Phys. 41(10), 4208–4226 (1970)

    Article  Google Scholar 

  • L.M. Barker, High-pressure quasi-isentropic impact experiments, in Shock Compression of Condensed Matter, ed. by J.R. Asay, R.A. Graham, G.K. Straub (Elsevier, Amsterdam, 1984), pp. 217–223

    Google Scholar 

  • L.M. Barker, T.G. Trucano, J.L. Wise, J.R. Asay, Experimental technique for measuring the isentrope of hydrogen to several megabars, in Shock Waves in Condensed Matter, ed. by Y.M. Gupta (Plenum, New York, NY, 1986), pp. 455–459

    Chapter  Google Scholar 

  • L.M. Barker, T.G. Trucano, J.W. Munford, Metal surface gouging by hypervelocity sliding contact, in Shock Waves in Condensed Matter, ed. by S.C. Schmidt, N.C. Holmes (Elsevier, Amsterdam, 1988), pp. 753–756

    Google Scholar 

  • L.M. Barker, T.G. Trucano, A.R. Susoeff, Railgun rail gouging by hypervelocity sliding contact. IEEE Trans. Magnet 25(1), 83–87 (1989)

    Article  Google Scholar 

  • L.M. Barker, L.C. Chhabildas, Gas-accelerated plate stability study, in Shock Waves in Condensed Matter, ed. by S.C. Schmidt, J.N. Johnson, L.W. Davison (Elsevier, Amsterdam, 1990), pp. 989–991

    Google Scholar 

  • L.M. Barker, L.C. Chhabildas, T.G. Trucano, J.R. Asay, High gas pressure acceleration of flyer plates: experimental techniques. Int. J. Impact Eng. 10, 67–80 (1990)

    Article  Google Scholar 

  • N.R. Barton, J.V. Bernier, R. Becker, A. Arsenlis, R. Cavallo, J. Marian, M. Rhee, H.-S. Park, B.A. Remington, R.T. Olson, A multiscale strength model for extreme loading conditions. J. Appl. Phys. 109, 073501 (2011)

    Article  Google Scholar 

  • F. Bauer, R.A. Graham, M.U. Anderson, H. Lefebvre, L.M. Lee, R.P. Reed, Response of the piezoelectric polymer PVDF to shock compression greater than 10 GPa, in Shock Compression of Condensed Matter, ed. by S.C. Schmidt, R.D. Dick, J.W. Forbes, D.G. Tasker (Elsevier, Amsterdam, 1992), pp. 887–890

    Google Scholar 

  • M.B. Boslough, R.A. Graham, Submicrosecond shock-induced chemical reactions in solids: first real-time observations. Chem. Phys. Lett. 121, 446–452 (1985)

    Article  Google Scholar 

  • M.B. Boslough, E.L. Venturini, B. Morosin, R.A. Graham, D.L. Williamson, Physical properties of shocked and thermally altered nontronite: Implications for the Martian surface. J. Geophys. Res. 91, E207–E214 (1986a)

    Article  Google Scholar 

  • M.B. Boslough, R.A. Graham, D.M. Webb, Optical measurements of shock-induced chemical reactions in mixed aluminum-nickel powder, in Shock Waves in Condensed Matter, ed. by Y.M. Gupta (Plenum, New York, NY, 1986b), pp. 767–772

    Chapter  Google Scholar 

  • M.B. Boslough, Shock-induced chemical reactions in nickel-aluminum powder mixtures: radiation pyrometer measurements. Chem. Phys. Lett. 160, 618–622 (1989)

    Article  Google Scholar 

  • M.B. Boslough, Shock modification and chemistry and planetary geologic processes. Annu. Rev. Earth Planet Sci. 19, 101–130 (1991)

    Article  Google Scholar 

  • M.B. Boslough, Thermochemistry of shock-induced exothermic reactions in selected porous mixtures, in Proceedings of Explomet 1990 International Conference on Shock-Wave and High-Strain-Rate Phenomena in Materials, ed. by M.A. Meyers, L.E. Murr, K.P. Staudhammer (Marcel Dekker, New York, NY, 1992), pp. 253–260

    Google Scholar 

  • M.B. Boslough, J.A. Ang, L.C. Chhabildas, W.D. Reinhart, C.A. Hall, B.G. Cour-Palais, E.L. Christiansen, J.L. Crews, Hypervelocity testing of advanced shielding concepts for spacecraft against impacts to 10 km/s. Int. J. Impact Eng. 14, 95–106 (1993)

    Article  Google Scholar 

  • M.B. Boslough, L.C. Chhabildas, W.D. Reinhart, C.A. Hall, J.M. Miller, R. Hickman, S.A. Mullin, D.L. Littlefield, PVDF gauge characterization of hypervelocity – impact-generated debris clouds, in High-Pressure Science and Technology, AIP Conference Proceedings, ed. by S.C. Schmidt, J.W. Shaner, G.A. Samara, M. Ross, vol. 329 (AIP, College Park, MD, 1994a), pp. 1833–1836

    Chapter  Google Scholar 

  • M. Boslough, E. Chael, T.G. Trucano, D.A. Crawford, Axial focusing of energy from a hypervelocity impact on Earth. Int. J. Impact. Eng. 17, 99–108 (1995a)

    Article  Google Scholar 

  • M.B. Boslough, D.A. Crawford, T.G. Trucano, A.C. Robinson, Numerical modeling of Shoemaker-Levy 9 impacts as a framework for interpreting observations. Geophys. Res. Lett. 22(13), 1821–1824 (1995b)

    Article  Google Scholar 

  • M.B. Boslough, D.A. Crawford, Impact-generated atmospheric plumes: observations on Jupiter and implications for Earth, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by S.C. Schmidt, W.C. Tao, vol. 370 (AIP, College Park, MD, 1996), pp. 1187–1190

    Google Scholar 

  • M.B.E. Boslough, D.A. Crawford, Shoemaker-Levy 9 and plume forming collisions on Earth near-Earth objects, in Annals of the New York Academy of Sciences, ed. by J.L. Remo, vol. 822 (The New York Academy of Sciences, NY, New York, 1997), pp. 236–282

    Google Scholar 

  • M.B. Boslough, D.A. Crawford, Low-altitude airbursts and the impact threat. Int. J. Impact. Eng. 35, 1441–1448 (2008)

    Article  Google Scholar 

  • R.M. Brannon, L.C. Chhabildas, Experimental and numerical investigation of shock-induced full vaporization of zinc. Int. J. Impact Eng. 17, 109–120 (1995)

    Article  Google Scholar 

  • J.L. Brown, C.S. Alexander, J.R. Asay, T.J. Vogler, J.L. Ding, Extracting strength from high pressure ramp-release experiments. J. Appl. Phys. 114, 223518 (2013a)

    Article  Google Scholar 

  • J.L. Brown, C.S. Alexander, J.R. Asay, T.J. Vogler, D.H. Dolan, J.L. Belof, Flow strength of tantalum under ramp compression to 250 GPa. J. Appl. Phys. 115, 043530 (2014a)

    Article  Google Scholar 

  • J.L. Brown, M.D. Knudson, C.S. Alexander, J.R. Asay, Shockless compression and release behavior of beryllium to 110 GPa. J. Appl. Phys. 116, 033502 (2014b)

    Article  Google Scholar 

  • W.K. Brown, R.R. Karpp, D.E. Grady, Fragmentation of the universe. Astrophys. Space Sci. 94, 401–412 (1983)

    Article  Google Scholar 

  • A.R. Champion, W.B. Benedick, Detection of strong shock waves with plastic tapes. Rev. Sci. Instrum. 39(3), 377–378 (1968)

    Article  Google Scholar 

  • L.C. Chhabildas, J.R. Asay, Rise-time measurements of shock transitions in aluminum, copper, steel. J. Appl. Phys. 50(4), 2749–2756 (1979)

    Article  Google Scholar 

  • L.C. Chhabildas, J.R. Asay, Time-resolved wave profile measurements in copper to megabar pressures, in High Pressure in Research and Industry (Proceedings of 6 th AIRAPT and 19 th EHPRG International Conference), ed. by C.-M. Backman, T. Johannisson, L. Tegnér (Arkitektkopia, Uppsala, 1982), pp. 183–189

    Google Scholar 

  • L.C. Chhabildas, R.D. Hardy, Pressure-shear loading techniques for material-property studies [A paper was prepared on this topic for the Aeroballistic Range Association; hence, ARA members should be able to obtain a CD-ROM containing the collected proceedings]. Sandia National Laboratories Report SAND82-1546 (Sandia National Laboratory, Albuquerque, NM, 1982)

    Google Scholar 

  • L.C. Chhabildas, J.L. Wise, J.R. Asay, Reshock and release behavior of beryllium, in 1981 Topical Conference on Shock Waves in Condensed Matter, AIP Conference Proceedings, ed. by W.J. Nellis, L. Seaman, R.A. Graham, vol. 78 (AIP, College Park, MD, 1982), pp. 422–426

    Google Scholar 

  • L.C. Chhabildas, L.M. Barker, Dynamic quasi-isentropic compression of tungsten, in Shock Waves in Condensed Matter, ed. by S.C. Schmidt, N.C. Holmes (Elsevier, Amsterdam, 1988), pp. 111–114

    Google Scholar 

  • L.C. Chhabildas, J.R. Asay, L.M. Barker, Shear Strength of Tungsten Under Shock- and Quasi-Isentropic Loading to 250 GPa. Sandia National Laboratories Report SAND88-0306 (Sandia National Laboratory, Albuquerque, NM, 1988)

    Google Scholar 

  • L.C. Chhabildas, L.M. Barker, J.R. Asay, T.G. Trucano, Relationship of fragment size to normalized spall strength for materials. Int. J. Impact Eng. 10, 107–124 (1990)

    Article  Google Scholar 

  • L.C. Chhabildas, L.M. Barker, J.R. Asay, T.G. Trucano, G.I. Kerley, Sandia’s New Hypervelocity Launcher, HVL. Sandia National Laboratories Report SAND91-0657 (Sandia National Laboratory, Albuquerque, NM, 1991)

    Google Scholar 

  • L.C. Chhabildas, J.R. Asay, Dynamic yield strength and spall strength measurements under quasi-isentropic loading, in Shock-Wave and High-Strain-Rate Phenomena in Materials, ed. by M.A. Meyers et al. (Marcel Dekker, New York, NY, 1992), pp. 947–955

    Google Scholar 

  • L.C. Chhabildas, L.M. Barker, J.R. Asay, T.G. Trucano, G.I. Kerley, J.E. Dunn, Launch capabilities to over 10 km/s, in Shock Compression of Condensed Matter, ed. by S.C. Schmidt, R.D. Dick, J.W. Forbes, D.G. Tasker (Elsevier, Amsterdam, 1992), pp. 1025–1031

    Google Scholar 

  • L.C. Chhabildas, E.S. Hertel, S.A. Hill, Hypervelocity impact tests and simulations of single Whipple bumper shield concepts at 10 km/s. Int. J. Impact Eng. 14, 133–144 (1993a)

    Article  Google Scholar 

  • L.C. Chhabildas, J.E. Dunn, W.D. Reinhart, J.M. Miller, An impact technique to accelerate flyer plates to velocities over 12 km/s. Int. J. Impact Eng. 14, 121–132 (1993b)

    Article  Google Scholar 

  • L.C. Chhabildas, T.G. Trucano, W.D. Reinhart, C.A. Hall, Chunk Projectile Launch Using the Sandia Hypervelocity Launcher Facility. Sandia National Laboratories Report SAND94-1273 (Sandia National Laboratory, Albuquerque, NM, 1994)

    Book  Google Scholar 

  • L.C. Chhabildas, L.N. Kmetyk, W.D. Reinhart, C.A. Hall, Enhanced hypervelocity launcher: capabilities to 16 km/s. Int. J. Impact Eng. 17, 183–191 (1995)

    Article  Google Scholar 

  • L.C. Chhabildas, M.D. Knudson, Techniques to launch projectile plates to high velocities, in High Pressure Shock Compression of Solids VIII, ed. by L.C. Chhabildas, L.W. Davison, L. Horie (Springer, New York, NY, 2005), pp. 143–200

    Chapter  Google Scholar 

  • L.C. Chhabildas, W.D. Reinhart, T.F. Thornhill, J.L. Brown, Shock-induced vaporization in metals. Int. J. Impact Eng. 33(1-12), 158–168 (2006)

    Article  Google Scholar 

  • R.T. Cygan, W.H. Casey, M.B. Boslough, H.R. Westrich, M.J. Carr, J.R. Holdren Jr., Dissolution kinetics of experimentally shocked silicate minerals. Chem. Geol. 78, 229–244 (1989)

    Article  Google Scholar 

  • R.T. Cygan, M.B. Boslough, R.J. Kirkpatrick, Experimentally shocked quartz, NMR spectroscopy and shock wave barometry, in Shock Compression of Condensed Matter, ed. by S.C. Schmidt et al. (Elsevier, Amsterdam, 1990), pp. 653–656

    Google Scholar 

  • R.T. Cygan, M.B. Boslough, Analysis of Experimentally Shocked Minerals by NMR Spectroscopy. Sandia National Laboratories Report SAND94-0294 (Sandia National Laborator, Albuquerque, NM, 1994)

    Google Scholar 

  • L.W. Davison, R.A. Graham, Shock compression of solids. Physics Reports 55(4), 255–359 (1979)

    Article  Google Scholar 

  • A. Dewaele, P. Loubeyre, Mechanical properties of tantalum under high pressure. Phys. Rev. B 72, 134106 (2005)

    Article  Google Scholar 

  • B.W. Dodson, M.B. Boslough, Techniques for recovery of shock-loaded samples, in Shock Compression of Condensed Matter, ed. by S.C. Schmidt, J.N. Johnson, L.W. Davison (Elsevier, Amsterdam, 1990), pp. 767–769

    Google Scholar 

  • K.E. Duprey, R.J. Clifton, Pressure shear response of thin tantalum foils, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.D. Furnish, L.C. Chhabildas, R.S. Hixson, vol. 505 (AIP, College Park, MD, 2000), pp. 447–450

    Google Scholar 

  • M.J. Forrestal, D.E. Grady, K.W. Schuler, An experimental method to estimate the dynamic fracture strength of oil shale in the 103 to 104/s strain rate regime. Int. J. Rock Mech. Min. Sci. 15, 263–265 (1978)

    Article  Google Scholar 

  • M.J. Forrestal, T.C. Togami, W.E. Baker, D.J. Frew, Performance evaluation of accelerometers used for penetration experiments. Exp. Mech. 43(1), 90–96 (2003)

    Article  Google Scholar 

  • D.E. Fratanduono, T.R. Boehly, M.A. Barrios, D.D. Meyerhofer, J.H. Eggert et al., Refractive index of lithium fluoride ramp compressed to 800 GPa. J. Appl. Phys. 109, 123521 (2011)

    Article  Google Scholar 

  • M.D. Furnish, L.C. Chhabildas, W.D. Reinhart, Time-resolved particle velocity measurements at impact velocities of 10 km/s. Int. J. Impact Eng. 23(1), 261–270 (1999)

    Article  Google Scholar 

  • M.D. Furnish, L.C. Chhabildas, R.E. Setchell, S.T. Montgomery, Dynamic electromechanical characterization of axially poled PZT 95/5, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.D. Furnish, L.C. Chhabildas, R.S. Hixson, vol. 505 (AIP, College Park, MD, 2000), pp. 975–978

    Google Scholar 

  • D.E. Grady, R.E. Hollenbach, High strain rate studies in rock. Geophys. Res. Lett. 4, 263–266 (1977)

    Article  Google Scholar 

  • D.E. Grady, R.E. Hollenbach, K.W. Schuler, Compression wave studies in calcite rock. J. Geophys. Res. 83, 2839–2849 (1978)

    Article  Google Scholar 

  • D.E. Grady, M.E. Kipp, The micromechanics of impact fracture of rock. Int. J. Rock Mech. Mining Sci. 16, 293–302 (1979)

    Article  Google Scholar 

  • D.E. Grady, Fragmentation of solids under impulsive stress loading. J. Geophys. Res. 86, 1047–1054 (1981a)

    Article  Google Scholar 

  • D.E. Grady, Fragment size prediction in dynamic fragmentation, in Shock Waves in Condensed Matter, AIP Conference Proceedings, ed. by W.J. Nellis, L. Seaman, R.A. Graham, vol. 78 (AIP, College Park, MD, 1982a), pp. 456–459

    Google Scholar 

  • D.E. Grady, Local inertial effects in dynamic fragmentation. J. Appl. Phys. 53(1), 322–325 (1982b)

    Article  Google Scholar 

  • D.E. Grady, Analysis of Prompt Fragmentation in Explosively-Loaded Uranium Cylindrical Shells. Sandia National Laboratories Report SAND82-0140 (Sandia National Laboratory, Albuquerque, NM, 1982c)

    Google Scholar 

  • D.E. Grady, J.R. Asay, Calculation of thermal trapping in shock deformation of aluminum. J. Appl. Phys. 54, 7350–7354 (1982)

    Article  Google Scholar 

  • D.E. Grady, M.E. Kipp, Geometric statistics and dynamic fragmentation. J. Appl. Phys. 58(3), 1210–1222 (1985a)

    Article  Google Scholar 

  • D.E. Grady, Particle size statistics in dynamic fragmentation. J. Appl. Phys. 68(12), 6099–6105 (1990)

    Article  Google Scholar 

  • D.E. Grady, Dynamic fracture and fragmentation, in High-Pressure Shock Compression of Solids, ed. by J.R. Asay, M. Shahinpoor (Springer, New York, NY, 1993), pp. 265–322

    Chapter  Google Scholar 

  • D.E. Grady, Fragmentation of Rings and Shells – The Legacy of N. F. Mott (Springer, New York, NY, 2006)

    Google Scholar 

  • D.E. Grady, Length scales and size distributions in dynamic fragmentation. Int. J. Fracture 163, 85–99 (2010b)

    Article  MATH  Google Scholar 

  • R.A. Graham, Shock-induced electrical activity in polymeric solids. A mechanically induced bond scission model. J. Phys. Chem. 83(23), 3048–3056 (1979b)

    Article  Google Scholar 

  • R.A. Graham, Electrical activity in shock-loaded polymers, in High Pressure in Science and Technology, ed. by K.D. Timmerhaus, M.S. Barber (Pergamon, Oxford, 1980), pp. 1032–1039

    Google Scholar 

  • R.A. Graham, D.B. Webb, Fixtures for controlled explosive loading and preservation of powder samples, in Shock Waves in Condensed Matter, ed. by J.R. Asay, R.A. Graham, G.K. Straub (Elsevier, Amsterdam, 1984), pp. 211–216

    Google Scholar 

  • R.A. Graham, M.J. Carr, Analytical electron microscopy study of shock synthesized zinc ferrite, in Shock Waves in Condensed Matter, ed. by Y.M. Gupta (Plenum, New York, NY, 1986), pp. 803–808

    Chapter  Google Scholar 

  • R.A. Graham, D.M. Webb, Shock-induced temperature distributions in powder compact recovery fixtures, in Shock Waves in Condensed Matter, ed. by Y.M. Gupta (Plenum, New York, NY, 1986), pp. 589–593

    Google Scholar 

  • R.A. Graham, B. Morosin, Y. Horie, E.L. Venturini, M.B. Boslough, M.J. Carr, D.L. Williamson, Chemical synthesis under shock compression, in Shock Waves in Condensed Matter, ed. by Y.M. Gupta (Plenum, New York, NY, 1986a), pp. 693–711

    Chapter  Google Scholar 

  • R.A. Graham, B. Morosin, E.L. Venturini, M.J. Carr, E.K. Beauchamp, Shock-compression processes in inorganic powders, in Metallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena, ed. by L.E. Murr, K.P. Staudhammer, M.A. Meyers (Marcel Dekker, New York, NY, 1986b), pp. 1005–1012

    Google Scholar 

  • R.A. Graham, Shock compression of solids as a physical-chemical-mechanical process, in Shock Waves in Condensed Matter, ed. by S.C. Schmidt, N.C. Holmes (Elsevier, Amsterdam, 1988), pp. 11–19

    Google Scholar 

  • R.A. Graham, L.M. Lee, F. Bauer, Response of Bauer piezoelectric polymer stress gauges (PVDF) to shock loading, in Shock Waves in Condensed Matter, ed. by S.C. Schmidt, N.C. Holmes (Elsevier, Amsterdam, 1988a), pp. 619–622

    Google Scholar 

  • R.A. Graham, B. Morosin, D.M. Bush, Shock-induced melting of a KCl:LiCl eutectic powder as determined from electrochemical response measurements, in Shock Waves in Condensed Matter, ed. by S.C. Schmidt, N.C. Holmes (Elsevier, Amsterdam, 1988b), pp. 179–184

    Google Scholar 

  • R.A. Graham, Issues in shock-induced solid state chemistry, in Behavior of Dense Media Under High Dynamic Pressures (3rd International Symposium High Dynamic Pressures, ed. by R. Cheret (Association Francaise de Pyrotechnie, Paris, 1989), pp. 175–180

    Google Scholar 

  • T.A. Haill, C.J. Garasi, A.C. Robinson, ALEGRA-MHD: Version 40. Sandia National Laboratories Report SAND2003-4074 (Sandia National Laboratory, Albuquerque, NM, 2003)

    Google Scholar 

  • W.F. Hammetter, J.R. Hellmann, R.A. Graham, B. Morosin, Energy release and transformation of shock-modified zirconia upon annealing to 1550 degrees C, in Shock Waves in Condensed Matter, ed. by J.R. Asay, R.A. Graham, G.K. Straub (Elsevier, Amsterdam, 1984), pp. 391–394

    Google Scholar 

  • W.F. Hammetter, R.A. Graham, B. Morosin, Y. Horie, Effects of shock modification on the self-propagating high temperature synthesis of nickel aluminides, in Shock Waves in Condensed Matter, ed. by S.C. Schmidt, N.C. Holmes (Elsevier, Amsterdam, 1988), pp. 431–434

    Google Scholar 

  • R.S. Hawke, A.R. Susoeff, J.A. Ang, C.H. Konrad, C.A. Hall, G.L. Sauve, A.R. Vasey, Performance of hypervelocity armatures with replenished metal vapor plasmas, in Third European Electromagnetic Launcher Symposium Proceedings (University of California Radiation Laboratory Report UCRL-JC-106828), ed. by University of California Radiation Laboratory (Lawrence Livermore National Laboratory, Livermore, CA, 1991a)

    Google Scholar 

  • R.S. Hawke, A.R. Susoeff, J.R. Asay, J.A. Ang, C.A. Hall et al., Railgun performance with a two-stage light-gas gun injector. IEEE Trans. Magnet 27, 28–32 (1991b)

    Article  Google Scholar 

  • D.B. Hayes, D.E. Grady, A thermal-viscous model for heterogeneous yielding in aluminum, in Shock Waves in Condensed Matter, AIP Conference Proceedings, ed. by W.J. Nellis, L. Seaman, R.A. Graham, vol. 78 (AIP, College Park, MD, 1982), pp. 412–415

    Google Scholar 

  • D.B. Hayes, Unsteady compression waves in interferometer windows. J. Appl. Phys. 89, 6484–6486 (2001)

    Article  Google Scholar 

  • D.B. Hayes, C.A. Hall, J.R. Asay, M.D. Knudson, Measurement of the compression isentrope for 6061-T6 aluminum to 185 GPa and 46% volumetric strain using pulsed magnetic loading. J. Appl. Phys. 96(10), 5520–5527 (2004)

    Article  Google Scholar 

  • J.R. Hellmann, K. Kuroda, A.H. Heuer, R.A. Graham, Microstructural characterization of shock-modified zirconia powders, in Shock Waves in Condensed Matter, ed. by J.R. Asay, R.A. Graham, G.K. Straub (Elsevier, Amsterdam, 1984), pp. 387–390

    Google Scholar 

  • B.L. Holian, D.E. Grady, Fragmentation by Molecular Dynamics – The Microscopic Big Bang. Phys. Rev. Lett. 60(14), 1355–1358 (1988)

    Article  Google Scholar 

  • Y. Horie, R.A. Graham, I.K. Simonsen, Observations on the shock-synthesis of intermetallic compounds, in Metallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena, ed. by L.E. Murr, K.P. Staudhammer, M.A. Meyers (Marcel Dekker, New York, NY, 1986a), pp. 1023–1035

    Google Scholar 

  • Y. Horie, D.E.P. Hoy, I.K. Simonsen, R.A. Graham, B. Morosin, Shock synthesis of titanium aluminides, in Shock Waves in Condensed Matter, ed. by Y.M. Gupta (Plenum, New York, NY, 1986b), pp. 749–754

    Chapter  Google Scholar 

  • Y. Horie, M.E. Kipp, Modeling of shock-induced chemical reactions in powder mixtures. J. Appl. Phys. 63(12), 5718–5727 (1988)

    Article  Google Scholar 

  • J.N. Johnson, Micromechanical considerations in shock compression of solids, in High-Pressure Shock Compression of Solids, ed. by J.R. Asay, M. Shahinpoor (Springer, New York, NY, 1993), pp. 222–240

    Google Scholar 

  • M.E. Kipp, L.W. Davison, Analyses of ductile flow and fracture in two dimensions, in Shock Waves in Condensed Matter, AIP Conference Proceedings, ed. by W.J. Nellis, L. Seaman, R.A. Graham, vol. 78 (AIP, College Park, MD, 1982), pp. 442–445

    Google Scholar 

  • M.E. Kipp, D.E. Grady, Flaw nucleation and energetics of dynamic fragmentation, in Shock Waves in Condensed Matter, ed. by J.R. Asay, R.A. Graham, G.K. Straub (Elsevier, Amsterdam, 1983), pp. 159–162

    Google Scholar 

  • M.E. Kipp, D.E. Grady, J.W. Swegle, Numerical and experimental studies of high-velocity impact fragmentation. Int. J. Impact Eng. 14, 427–1438 (1993)

    Article  Google Scholar 

  • M.E. Kipp, R.R. Martinez, E.S. Hertel, E.L. Baker, B.E. Fuchs, C.L. Chin, Experiments and simulations of spinning shaped charges with fluted liners, in 18th International Symposium on Ballistics, ed. by W.G. Reinecke, vol. 1 (Technomic Publishing Co, Lancaster, PA, 1999a), pp. 499–506

    Google Scholar 

  • C.H. Konrad, L.C. Chhabildas, M.B. Boslough, A.J. Piekutowski, K.L. Poormon, S.A. Mullin, D.L. Littlefield, Dependence of debris cloud formation on projectile shape, in High-Pressure Science and Technology, AIP Conference Proceedings, ed. by S.C. Schmidt, J.W. Shaner, G.A. Samara, M. Ross, vol. 309 (AIP, College Park, MD, 1994), pp. 1845–1848

    Chapter  Google Scholar 

  • R.J. Lawrence, Stand-off shields for hypervelocity particles, in Shock Compression of Condensed Matter, ed. by S.C. Schmidt, J.N. Johnson, L.W. Davison (Elsevier, Amsterdam, 1990b), pp. 959–962

    Google Scholar 

  • R.J. Lawrence, A simple Approach for the Design and Optimization of Stand-Off Hypervelocity Particle Shields. AIAA Paper No. 92–1465. AIAA Space Programs and Technologies Conference (AIAA, Huntsville, AL, 1992a), pp. 24–27

    Google Scholar 

  • R.J. Lawrence, L.N. Kmetyk, L.C. Chhabildas, The influence of phase changes on debris-cloud interactions with protected structures. Int. J. Impact Eng. 17, 487–496 (1995)

    Article  Google Scholar 

  • R.J. Lawrence, W.D. Reinhart, L.C. Chhabildas, T.F. Thornhill, Spectral measurements of hypervelocity impact flash. Int. J. Impact Eng. 33(1–12), 353–363 (2006)

    Article  Google Scholar 

  • L.M. Lee, Shock-Induced Index-of-Refraction variations in PMMA, Sapphire and Lithium Fluoride. Ktech Corporation Technical Report No. TR76–04 (Sandia National Laboratory, Albuquerque, NM, 1976)

    Google Scholar 

  • L.M. Lee, W.D. Williams, R.A. Graham, F. Bauer, Studies of the Bauer piezoelectric polymer gauge (PVDF) under impact loading, in Shock Waves in Condensed Matter, ed. by Y.M. Gupta (Plenum, New York, NY, 1986), pp. 497–502

    Chapter  Google Scholar 

  • L.M. Lee, R.A. Graham, F. Bauer, R.P. Reed, Standardized Bauer PVDF piezoelectric polymer shock gauge. In DYMAT 88 – 2nd international conference on mechanical and physical behaviour of materials under dynamic loading. J Phys Colloques 49(C3), 651–657 (1988)

    Article  Google Scholar 

  • L.M. Lee, D.A. Hyndman, R.P. Reed, F. Bauer, PVDF applications in shock measurements, in Shock Compression of Condensed Matter, ed. by S.C. Schmidt, J.N. Johnson, L.W. Davison (Elsevier, Amsterdam, 1990), pp. 821–824

    Google Scholar 

  • L.M. Lee, D.E. Johnson, F. Bauer, R.P. Reed, J.I. Greenwoll, Piezoelectric polymer PVDF application under soft x-ray induced shock loading, in Shock Compression of Condensed Matter, ed. by S.C. Schmidt, R.D. Dick, J.W. Forbes, D.G. Tasker (Elsevier, Amsterdam, 1992), pp. 879–882

    Google Scholar 

  • S.T. Montgomery, R. A. Graham, F. Bauer, H. Moulard, Copolymer shock gauge response investigation with the fully coupled electromechanical code, SUBWAY, in Proceedings of the Workshop on the Technology of Ferroelectric Polymers (1995), pp. 412–431.

    Google Scholar 

  • S.T. Montgomery, R.A. Graham, M.U. Anderson, Return to the shorted and shunted quartz gauge problem: analysis with the SUBWAY code, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by S.C. Schmidt, W.C. Tao, vol. 370 (AIP, College Park, MD, 1996), pp. 1025–1028

    Google Scholar 

  • S.T. Montgomery, R.M. Brannon, J. Robbins, R.E. Setchell, D.H. Zeuch, Simulation of the effects of shock stress and electrical field strength on shock-induced depoling of normally poled PZT 95/5, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.D. Furnish, N.N. Thadhani, Y.M. Horie, vol. 620 (AIP, College Park, MD, 2002), pp. 201–204

    Google Scholar 

  • B. Morosin, R.A. Graham, X-ray diffraction line broadening studies on shock-loaded TiO2 and Al2O3, in Shock Waves in Condensed Matter, ed. by J.R. Asay, R.A. Graham, G.K. Straub (Elsevier, Amsterdam, 1984), pp. 355–362

    Google Scholar 

  • B. Morosin, R.A. Graham, X-ray diffraction studies on shock-modified materials, in Metallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena, ed. by L.E. Murr, K.P. Staudhammer, M.A. Meyers (Marcel Dekker, New York, NY, 1986), pp. 1037–1047

    Google Scholar 

  • B. Morosin, E.L. Venturini, R.A. Graham, X-ray diffraction studies of shock-synthesized zinc ferrite, in Shock Waves in Condensed Matter, ed. by Y.M. Gupta (Plenum, New York, NY, 1986), pp. 797–802

    Chapter  Google Scholar 

  • B. Morosin, R.A. Graham, E.L. Venturini, D.S. Ginley, Shock-induced chemical synthesis of phases similar to the high temperature superconductor oxides, in Shock Waves in Condensed Matter, ed. by S.C. Schmidt, N.C. Holmes (Elsevier, Amsterdam, 1988a), pp. 439–442

    Google Scholar 

  • B. Morosin, R.A. Graham, E.L. Venturini, M.J. Carr, D.L. Williamson, Shock-induced chemical synthesis of barium ferrites, in Shock Waves in Condensed Matter, ed. by S.C. Schmidt, N.C. Holmes (Elsevier, Amsterdam, 1988b), pp. 435–438

    Google Scholar 

  • B. Morosin, R.A. Graham, S.S. Pollack, X-ray diffraction line broadening, in Shock Compression of Condensed Matter, ed. by S.C. Schmidt, R.D. Dick, J.W. Forbes, D.G. Tasker (Elsevier, Amsterdam, 1992), pp. 613–616

    Google Scholar 

  • S.A. Myers, C.C. Koch, Y. Horie, R.A. Graham, TEM of nickel aluminides produced by shock compaction, in Shock Waves in Condensed Matter, ed. by Y.M. Gupta (Plenum, New York, NY, 1986), pp. 755–759

    Chapter  Google Scholar 

  • H.S. Park, N.R. Barton, J.L. Belof, K.J.M. Blobaum, R.M. Cavallo et al., Experimental results of tantalum material strength at high pressure and high strain rate, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.L. Elert, W.T. Buttler, J.P. Borg, J.L. Jordan, T.J. Vogler, vol. 1426 (AIP, College Park, MD, 2012), pp. 1371–1374

    Google Scholar 

  • D.L. Preston, D.L. Tonks, D.C. Wallace, Model of plastic deformation for extreme loading conditions. J. Appl. Phys. 93, 211–220 (2003)

    Article  Google Scholar 

  • R.P. Reed, J.I. Greenwoll, The PVDF Piezoelectric Polymer Shock-Stress Sensor. Sandia National Laboratories Report SAND88-2907 (Sandia National Laboratory, Albuquerque, NM, 1989)

    Google Scholar 

  • W.D. Reinhart, L.C. Chhabildas, W.M. Trott, D.P. Dandekar, Investigating multi-dimensional effects in single crystal sapphire, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.D. Furnish, N.N. Thadhani, Y. Horie, vol. 620 (AIP, College Park, MD, 2002), pp. 791–794

    Google Scholar 

  • W.D. Reinhart, L.C. Chhabildas, Strength properties of Coors AD995 alumina in the shocked state. Int. J. Impact Eng. 29, 601–619 (2003)

    Article  Google Scholar 

  • W.D. Reinhart, L.C. Chhabildas, T.J. Vogler, Investigating phase transitions and strength in single crystal sapphire using shock-reshock loading techniques. Int. J. Impact Eng. 33, 655–669 (2006)

    Article  Google Scholar 

  • P.A. Rigg, M.D. Knudson, R.J. Scharff, R.S. Hixson, Determining the refractive index of shocked [100] lithium fluoride to the limit of transmissibility. J. Appl. Phys. 116, 033515 (2014)

    Article  Google Scholar 

  • A.C. Robinson, T.A. Brunner, S.K. Carroll, R.R. Drake et al., ALEGRA: an arbitrary lagrangian-eulerian multimaterial, multiphysics code, in Proceedings of the 46th AIAA Aerospace Science Meeting and Exhibit, American Institute of Aeronautics and Astronautics, AIAA 2008–1235, ed. by IUTAM (AIAA, Huntsville, AL, 2008)

    Google Scholar 

  • A.C. Robinson, J.H.J. Niederhaus, V.G. Weirs, E. Love, Arbitrary Lagrangian–Eulerian 3D ideal MHD algorithms. Int. J. Num. Meth. Fluids 65, 1438–1450 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • R.L. Schwoebel, Explosion aboard the Iowa (Naval Institute Press, Annapolis, MD, 1999)

    Google Scholar 

  • R.E. Setchell, Experimental studies of chemical reactivity during shock initiation of hexanitrostilbene, in Proceedings of the 8th International Detonation Symposium, Albuquerque, NM, Navy Report NSWC MP 86-194, ed. by J.M. Short, W.E. Deal (NSWC, Albuquerque, NM, 1986), pp. 15–25

    Google Scholar 

  • R.E. Setchell, S.T. Montgomery, L.C. Chhabildas, M.D. Furnish, The effects of shock stress and field strength on shock-induced depoling of normally poled PZT 95/5, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.D. Furnish, L.C. Chhabildas, R.S. Hixson, vol. 505 (AIP, College Park, MD, 2000), pp. 979–982

    Google Scholar 

  • R.E. Setchell, Refractive index of sapphire at 532 nm under shock compression and release. J. Appl. Phys. 91, 2833–2841 (2002)

    Article  Google Scholar 

  • R.E. Setchell, Shock wave compression of the ferroelectric ceramic Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3: Hugoniot states and constitutive mechanical properties. J. Appl. Phys. 94, 573–588 (2003)

    Article  Google Scholar 

  • R.E. Setchell, Shock wave compression of the ferroelectric ceramic Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3: depoling currents. J. Appl. Phys. 97, 013507 (2005)

    Article  Google Scholar 

  • R.E. Setchell, S.T. Montgomery, D.E. Cox, M.U. Anderson, Dielectric properties of PZT 95/5 during shock compression under high electric fields, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.D. Furnish, M. Elert, T.P. Russell, C.T. White, vol. 845 (AIP, College Park, MD, 2006), pp. 278–281

    Google Scholar 

  • R.E. Setchell, Shock wave compression of the ferroelectric ceramic Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3: microstructural effects. J. Appl. Phys. 101, 053525 (2007)

    Article  Google Scholar 

  • R.E. Setchell, M.U. Anderson, S.T. Montgomery, Compositional effects of the shock-compression response of alumina-filled epoxy. J. Appl. Phys. 101, 083527 (2007a)

    Article  Google Scholar 

  • R.E. Setchell, S.T. Montgomery, D.E. Cox, M.U. Anderson, Initial temperature effects on the dielectric properties of PZT 95/5 during shock compression, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M. Elert, M.D. Furnish, R. Chau, N. Holmes, J. Nguyen, vol. 555 (AIP, College Park, MD, 2007b), pp. 193–196

    Google Scholar 

  • I.K. Simonsen, Y. Horie, R.A. Graham, Shock synthesis of nickel aluminides, in Shock Waves in Condensed Matter, ed. by Y.M. Gupta (Plenum, New York, NY, 1986), pp. 743–748

    Chapter  Google Scholar 

  • J.E. Smugeresky, T.T. McCabe, R.A. Graham, Effect of powder particle size and shape on the microstructure of explosively compacted stainless steel, in Shock Waves in Condensed Matter, ed. by S.C. Schmidt, N.C. Holmes (Elsevier, Amsterdam, 1988), pp. 411–414

    Google Scholar 

  • D.J. Steinberg, S.G. Cochran, M.W. Guinan, A constitutive model for metals applicable at high-strain rate. J. Appl. Phys. 51, 1498–1504 (1980)

    Article  Google Scholar 

  • D.J. Steinberg, C.M. Lund, A constitutive model for strain rates from 10–4 to 106/s. J. Appl. Phys. 65, 1528–1533 (1989)

    Article  Google Scholar 

  • D.J. Steinberg, Equation-of-State and Strength Properties of Selected Materials. Lawrence Livermore National Laboratory Report UCRL-MA-106439 (Lawrence Livermore National Laboratory, Livermore, CA, 1996) [This is the revised version; an earlier version with the same report no. was published in 1991]

    Google Scholar 

  • J.W. Swegle, D.E. Grady, Calculation of thermal trapping in shear bands, in Metallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena, ed. by L.E. Murr, K.P. Staudhammer, M.A. Meyers (Marcel Dekker, New York, NY, 1986a), pp. 705–722

    Google Scholar 

  • J.W. Swegle, D.E. Grady, Shock viscosity and the calculations of steady shock wave profiles, in Shock Waves in Condensed Matter, ed. by Y.M. Gupta (Plenum, New York, NY, 1986b), pp. 353–357

    Chapter  Google Scholar 

  • P.A. Taylor, M.B. Boslough, Y. Horie, Modeling of shock-induced chemistry in nickel-aluminum systems, in Shock Waves in Condensed Matter, ed. by S.C. Schmidt et al. (Elsevier, Amsterdam, 1988), pp. 395–398

    Google Scholar 

  • S.L. Thompson, CHARTD – A Computer Program for Calculating Problems of Coupled Hydrodynamic Motion and Radiation Flow in One Dimension. Sandia National Laboratories Report SC-RR-69-613 (Sandia National Laboratory, Albuquerque, NM, 1969)

    Google Scholar 

  • S.L. Thompson, Improvements in the CHARTD Radiation-Hydrodynamic Code I: Analytic Equations of State. Sandia National Laboratories Report SC-RR-70-28 (Sandia National Laboratory, Albuquerque, NM, 1970)

    Google Scholar 

  • S.L. Thompson, H.W. Lauson, Improvements in the CHARTD Radiation-Hydrodynamic Code IV: User Aid Programs. Sandia National Laboratories Report SC-DR-71-0715 (Sandia National Laboratory, Albuquerque, NM, 1972)

    Google Scholar 

  • S.L. Thompson, Improvements in the CHARTD Energy Flow Hydrodynamic Code V: 1972/73 Modifications. Sandia National Laboratories Report SLA-73-0477 (Sandia National Laboratory, Albuquerque, NM, 1973)

    Google Scholar 

  • S.L. Thompson, CKEOS2 – An Equation of State Test Program for the CHARTD/CSQ EOS Package. Sandia National Laboratories Report SAND76–0175 (Sandia National Laboratory, Albuquerque, NM, 1976)

    Google Scholar 

  • S.L. Thompson, CSQII – An Eulerian Finite Difference Program for Two-Dimensional Material Response – Part 1 Material Sections. Sandia National Laboratories Report SAND77-1339 (Sandia National Laboratory, Albuquerque, NM, 1979)

    Google Scholar 

  • T.F. Thornhill, L.C. Chhabildas, W.D. Reinhart, D.L. Davidson, Particle launch to 19 km/s for micro-meteoroid simulation using enhanced three-stage light gas gun hypervelocity launcher techniques. Int. J. Impact Eng. 33, 799–811 (2006)

    Article  Google Scholar 

  • T.G. Trucano, J.R. Asay, L.C. Chhabildas, Hydrocode benchmarking of 1-D shock vaporization experiments, in Shock Waves in Condensed Matter, ed. by S.C. Schmidt, N.C. Holmes (Elsevier, Amsterdam, 1988), pp. 163–166

    Google Scholar 

  • T.G. Trucano, D.E. Grady, J.M. McGlaun, Fragmentation statistics from Eulerian hydrocode calculations. Int. J. Impact Eng. 10, 587–600 (1990)

    Article  Google Scholar 

  • T.G. Trucano, L.C. Chhabildas, Calculations supporting hypervelocity launcher development, in High Pressure Science and Technology, AIP Conference Proceedings, ed. by S.C. Schmidt, J.W. Shaner, G.A. Samara, M. Ross, vol. 309 (AIP, College Park, MD, 1993), pp. 1639–1642

    Chapter  Google Scholar 

  • T.G. Trucano, L.C. Chhabildas, Computational design of hypervelocity launchers. Int. J. Impact Eng. 17, 849–860 (1995)

    Article  Google Scholar 

  • E.L. Venturini, B. Morosin, R.A. Graham, Magnetic properties of shock-synthesized and furnace-reacted zinc ferrite, in Shock Waves in Condensed Matter, ed. by Y.M. Gupta (Plenum, New York, NY, 1986), pp. 815–820

    Chapter  Google Scholar 

  • E.L. Venturini, R.A. Graham, B. Morosin, Static magnetization and microwave loss in shock-modified ferrites, in Shock Waves in Condensed Matter, ed. by S.C. Schmidt, N.C. Holmes (Elsevier, Amsterdam, 1988), pp. 451–456

    Google Scholar 

  • T.J. Vogler, W.D. Reinhart, L.C. Chhabildas, Dynamic behavior of boron carbide. J. Appl. Phys. 95, 173–4183 (2004)

    Article  Google Scholar 

  • T.J. Vogler, L.C. Chhabildas, Strength behavior of materials at high pressures. Int. J. Impact Eng. 33, 812–825 (2006)

    Article  Google Scholar 

  • G.W. Wellman, K.W. Schuler, Structural consequences of railgun augmentation (Proceedings of the 4th symposium on electromagnetic launch technology). IEEE Trans. Magnet 25, 593–598 (1988)

    Article  Google Scholar 

  • J.M. Winey, J.N. Johnson, Y.M. Gupta, Unloading and reloading response of aluminum single crystals: time-dependent anisotropic material description. J. Appl. Phys. 112, 093509 (2012)

    Article  Google Scholar 

  • J.L. Wise, Refractive index and equation of state of a shock-compressed aqueous solution of zinc chloride, in Shock Waves in Condensed Matter, ed. by J.R. Asay, R.A. Graham, G.K. Straub (Elsevier, Amsterdam, 1984), pp. 317–320

    Google Scholar 

  • J.L. Wise, L.C. Chhabildas, Laser interferometer measurements of refractive index in shock-compressed materials, in Shock Waves in Condensed Matter, ed. by Y.M. Gupta (Plenum, New York, NY, 1986), pp. 441–454

    Chapter  Google Scholar 

  • D.H. Zeuch, S.T. Montgomery, J.D. Keck, Hydrostatic and triaxial compression experiments on unpoled PZT 95/5-2Nb ceramic: The effects of shear stress on the FR1→AO polymorphic phase transformation. J. Mater. Res. 7(12), 3314–3332 (1992)

    Article  Google Scholar 

  • D.H. Zeuch, S.T. Montgomery, J.D. Keck, Some observations on the effects of shear stress on a polymorphic transformation in perovskite-structured lead-zirconate-titanate ceramic. J. Geophy. Res. 98(B2), 1901–1911 (1993)

    Article  Google Scholar 

  • D.H. Zeuch, S.T. Montgomery, J.D. Keck, Further observations on the effects of nonhydrostatic compression on the FR1→AO polymorphic phase transformation in niobium-doped, lead-zirconate-titanate ceramic. J. Mater. Res. 9(12), 1322–1327 (1994)

    Article  Google Scholar 

  • D.H. Zeuch, S.T. Montgomery, D.J. Holcomb, The effects of nonhydrostatic compression and applied electric field on the electromechanical behavior of poled lead zirconate titanate PZT 95/5-2Nb ceramic during the ferroelectric to antiferroelectric polymorphic transformation. J. Mater. Res. 14(5), 1814–1827 (1999)

    Article  Google Scholar 

  • D.H. Zeuch, S.T. Montgomery, D.J. Holcomb, Uniaxial compression experiments on lead zirconate titanate 95/5-2Nb ceramic: Evidence for an orientation-dependent, maximum compressive stress criterion for onset of the ferroelectric to antiferroelectric polymorphic transformation. J. Mater. Res. 15(3), 689–703 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Jointly by Sandia Corporation and the Authors

About this chapter

Cite this chapter

Asay, J.R., Chhabildas, L.C., Lawrence, R.J., Sweeney, M.A. (2017). Chapter 5 The 1980s: Heady Times. In: Impactful Times. Shock Wave and High Pressure Phenomena. Springer, Cham. https://doi.org/10.1007/978-3-319-33347-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33347-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33345-8

  • Online ISBN: 978-3-319-33347-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics