Advertisement

Chapter 4 The 1970s: New Opportunities

  • James R. Asay
  • Lalit C. Chhabildas
  • R. Jeffery Lawrence
  • Mary Ann Sweeney
Chapter
  • 532 Downloads
Part of the Shock Wave and High Pressure Phenomena book series (SHOCKWAVE)

Abstract

In 1973 a laboratory-wide reduction in Sandia staff was implemented that caused major reverberations in shock wave research. As Barry Butcher stated in his recollections:

Keywords

Shock Wave Energetic Material Acceleration Wave Three Mile Island Shock Wave Research 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. J.R. Asay, L.M. Barker, Interferometric measurement of shock-induced internal particle velocity and spatial variations in particle velocity. J. Appl. Phys. 45(6), 2540–2546 (1974)CrossRefGoogle Scholar
  2. J.R. Asay, D.B. Hayes, Shock-compression and release behavior near melt states in aluminum. J. Appl. Phys. 46, 4789–4800 (1975)CrossRefGoogle Scholar
  3. J.R. Asay, L.P. Mix, F.C. Perry, Ejection of material from shocked surfaces. J. Appl. Phys. 29, 284–287 (1976)Google Scholar
  4. J.R. Asay, Shock loading and unloading in bismuth. J. Appl. Phys. 48, 2832–2844 (1977a)CrossRefGoogle Scholar
  5. J.R. Asay, Effect of shock wave risetime on material ejection from aluminum surfaces. Sandia National Laboratories Report SAND77-0731 (Sandia National Laboratory, Albuquerque, NM, 1977b)CrossRefGoogle Scholar
  6. J.R. Asay, Thick-plate technique for measuring ejecta from shocked surfaces. J. Appl. Phys. 49, 6173–6175 (1978)CrossRefGoogle Scholar
  7. J.R. Asay, L.D. Bertholf, A model for estimating the effects of surface roughness on mass ejection from shocked surfaces. Sandia National Laboratories Report SAND78-1256 (Sandia National Laboratory, Albuquerque, NM, 1978)Google Scholar
  8. J.R. Asay, T.G. Trucano, L.C. Chhabildas, Time-resolved measurements of shock-induced vapor-pressure profiles, in Shock Waves in Condensed Matter, ed. by S.C. Schmidt, N.C. Holmes (Elsevier, Amsterdam, 1988), pp. 159–162Google Scholar
  9. J.R. Asay, M.D. Knudson, Use of pulsed magnetic fields for quasi-isentropic compression experiments, in High Pressure Shock Compression of Solids VIII, ed. by L.C. Chhabildas, L.W. Davison, Y. Horie (Springer, New York, NY, 2005), pp. 329–380CrossRefGoogle Scholar
  10. M.R. Baer, J.W. Nunziato, A theory for Deflagration-to-Detonation Transition (DDT) in Granular Explosives. Sandia National Laboratories Report SAND82-0293 (Sandia National Laborator, Albuquerque, NM, 1983)Google Scholar
  11. M.R. Baer, J.W. Nunziato, A Two-Phase Mixture Theory for the Deflagration-to-Detonation Transition (DDT) in Reactive Granular Materials. Int. J. Multiphase Flow 12(6), 861–889 (1986)zbMATHCrossRefGoogle Scholar
  12. M.R. Baer, R.J. Gross, J.W. Nunziato, E.A. Igel, An experimental and theoretical study of deflagration-to-detonation (DDT) in the granular explosive CP. Combust Flame 65, 15–30 (1986)CrossRefGoogle Scholar
  13. M.R. Baer, Numerical studies of dynamic compaction of inert and energetic granular materials. J. Appl. Mech. 55, 36–43 (1988)CrossRefGoogle Scholar
  14. M.R. Baer, J.W. Nunziato, Compressive combustion of granular materials induced by low velocity impact, in Proceedings of the 9th International Detonation Symposium Office of Naval Research Report ONR 113291-7:293-305, ed. by J.M. Short, E.L. Lee (Office of Naval Research, San Diego, CA, 1989)Google Scholar
  15. M.R. Baer, A mixture model for shock compression of porous multi-component reactive mixtures, in High-Pressure Science and Technology, AIP Conference Proceedings, ed. by S.C. Schmidt, J.W. Shaner, G.A. Samara, M. Ross, vol. 309 (AIP, College Park, MD, 1994), pp. 1247–1250CrossRefGoogle Scholar
  16. M.R. Baer, P.W. Cooper, M.E. Kipp, Investigations of Emergency Destruction Methods for Recovered, Explosively Configured, Chemical Warfare Munitions: Interim emergency Destruction Methods – Evaluation Report. Sandia National Laboratories Report SAND95-8248 (Sandia National Laboratory, Albuquerque, NM, 1995)CrossRefGoogle Scholar
  17. M.R. Baer, Continuum mixture modeling of reactive porous media, in High-Pressure Shock Compression of Solids IV: Response of Highly Porous Solids to Shock Loading (Chapter 3), ed. by L. Davison, Y. Horie, M. Shahinpoor (Springer, New York, NY, 1996)Google Scholar
  18. M.R. Baer, E.S. Hertel Jr., R.L. Bell, Multidimensional DDT modeling of energetic materials, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by S.C. Schmidt, W.C. Tao, vol. 370 (AIP, College Park, MD, 1996a), pp. 433–436Google Scholar
  19. M.R. Baer, R.A. Graham, M.U. Anderson, S.A. Sheffield, R.L. Gustavsen, Experimental and theoretical investigations of shock-induced flow of reactive porous media, in Proceedings of the 1996 JANAF Combustion Subcommittee and Propulsion System Hazards Subcommittee Joint Meeting, ed. by IUTAM (Chemical Propulsion Information Analysis Center, Johns Hopkins University, Baltimore, MD, 1996b), pp. 123–132Google Scholar
  20. M.R. Baer, Shock wave structure in heterogeneous reactive media, in Proceedings of 21st International Symposium on Shock Waves (University of Queensland, Great Keppel Island, QLD, 1997), pp. 923–927Google Scholar
  21. M.R. Baer, M.E. Kipp, F. van Swol, Micromechanical modeling of heterogeneous energetic materials, in Proceedings of the 11th International Detonation Symposium, Snowmass, CO. Office of Naval Research Report ONR 33300-5:788-797, ed. by J.M. Short, J.E. Kennedy (Office of Naval Research, San Diego, CA, 1998)Google Scholar
  22. M.R. Baer, Computational modeling of heterogeneous reactive materials at the mesoscale, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M. Furnish, L. Chhabildas, R. Hixson, vol. 505 (AIP, College Park, MD, 2000), pp. 27–33Google Scholar
  23. M.R. Baer, W.M. Trott, Mesoscale descriptions of shock-loaded heterogeneous porous materials, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M. Furnish, N.N. Thadhani, Y. Horie, vol. 620 (AIP, College Park, MD, 2002a), pp. 713–716Google Scholar
  24. M.R. Baer, W.M. Trott, Theoretical and experimental mesoscale studies of impact-loaded granular explosives and simulant materials, in Proceedings of the 12th International Detonation Symposium, San Diego, CA, Office of Naval Research Report ONR Report 333-05-2:939-950, ed. by J.M. Short, J.L. Maienschein (Office of Naval Research, San Diego, CA, 2002b)Google Scholar
  25. M.R. Baer, W.M. Trott, Mesoscale studies of shock loaded tin sphere lattices, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.D. Furnish, Y.M. Gupta, J.W. Forbes, vol. 706 (AIP, College Park, MD, 2004), pp. 517–520Google Scholar
  26. L.M. Barker, R.E. Hollenbach, Interferometer technique for measuring the dynamic mechanical properties of materials. Rev. Sci. Instrum. 36(11), 1617–1620 (1965)CrossRefGoogle Scholar
  27. L.M. Barker, Fine structure of compressive and release wave shapes in aluminum measured by the velocity interferometer technique, in Behavior of Dense Media Under High Dynamic Pressures, Proceedings of IUTAM Symposium on the Behavior of Dense Media Under High Dynamic Pressures, Paris, France, September 11–16, 1967, ed. by J. Berger (Gordon and Breach, New York, NY, 1968), pp. 483–504Google Scholar
  28. L.M. Barker, R.E. Hollenbach, Shock wave studies of PMMA, fused silica, and sapphire. J. Appl. Phys. 41(10), 4208–4226 (1970)CrossRefGoogle Scholar
  29. L.M. Barker, Velocity interferometer data reduction. Rev. Sci. Instrum. 42(2), 276–278 (1971a)CrossRefGoogle Scholar
  30. L.M. Barker, A model for stress wave propagation in composite materials. J. Compos. Mater. 5(2), 140–162 (1971b)CrossRefGoogle Scholar
  31. L.M. Barker, R.E. Hollenbach, A laser interferometer for measuring high velocities of any reflecting surface. J. Appl. Phys. 43(11), 4669–4675 (1972)CrossRefGoogle Scholar
  32. L.M. Barker, VISAR Data Reduction. Sandia National Laboratories Report SLA-73-1038 (Sandia National Laboratory, Albuquerque, NM, 1974)Google Scholar
  33. L.M. Barker, R.E. Hollenbach, Shock wave study of the α-ε phase transition in iron. J. Appl. Phys. 45(11), 4872–4887 (1974)CrossRefGoogle Scholar
  34. L.M. Barker, K.W. Schuler, Correction to the velocity-per-fringe relationship for the VISAR interferometer. J. Appl. Phys. 45(8), 3692–3693 (1974)CrossRefGoogle Scholar
  35. L.M. Barker, E.G. Young, SWAP-9: An Improved Stress Wave Analyzing Program. Sandia National Laboratories Report SLA-74-0009 (Sandia National Laboratory, Albuquerque, NM, 1974) [This version supersedes an earlier report by Barker dated 1969]Google Scholar
  36. L.M. Barker, C.D. Lundergan, P.J. Chen, M.E. Gurtin, Nonlinear viscoelasticity and the evolution of stress waves in laminated composites: a comparison of theory and experiment. J. Appl. Mech. 41, 1025–1030 (1974b)CrossRefGoogle Scholar
  37. L.M. Barker, α-Phase Hugoniot of iron. J. Appl. Phys. 46(6), 2544–2547 (1975)CrossRefGoogle Scholar
  38. L.M. Barker, The development of the VISAR, and its use in shock compression science, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.D. Furnish, L.C. Chhabildas, R.S. Hixson, vol. 505 (AIP, College Park, MD, 2000a), pp. 11–17Google Scholar
  39. L.D. Bertholf, L.D. Buxton, B.J. Thorne, R.K. Byers, A.L. Stevens, S.L. Thompson, Damage in steel plates from hypervelocity impact. II. Numerical results and spall measurement. J. Appl. Phys. 46, 3776–3783 (1975)CrossRefGoogle Scholar
  40. D.D. Bloomquist, S.A. Sheffield, Optically recording interferometer for velocity measurements with subnanosecond resolution. J. Appl. Phys. 54, 1717–1722 (1983a)CrossRefGoogle Scholar
  41. D.D. Bloomquist, S.A. Sheffield, ORVIS, Optically Recording Velocity Interferometer System Theory of Operation and Data Reduction Techniques. Sandia National Laboratories Report SAND82-2918 (Sandia National Laboratory, Albuquerque, NM, 1983b)Google Scholar
  42. R.R. Boade, M.E. Kipp, D.E. Grady, A blasting Concept for Preparing Vertical Modified In Situ Oil Shale Retorts. Sandia National Laboratories Report SAND81-1255 (Sandia National Laboratory, Albuquerque, NM, 1981)Google Scholar
  43. B.M. Butcher, A.L. Stevens, The shock wave response of Window Rock coal. Int. J. Rock Mech. Mining Sci. Geomech. Abstr. 12, 147–155 (1975)CrossRefGoogle Scholar
  44. R.K. Byers, A.J. Chabai, Penetration calculations and measurements for a layered soil target. Int. J. Num. Anal. Meth. Geomech. 1, 107–138 (1977)CrossRefGoogle Scholar
  45. R.K. Byers, P. Yarrington, A.J. Chabai, Dynamic penetration of soil media by slender projectiles, in International Journal of Engineering Science: Penetration Mechanics (Special Issue), ed. by A.C. Eringen, vol. 16 (Pergamon, Oxford, 1978), pp. 835–844Google Scholar
  46. A.J. Chabai, R.J. Lawrence, E.G. Young, Elastic-plastic target deformation due to a high speed pulsed water jet impact. Sandia National Laboratories Report SLA-74-5227 (Sandia National Laboratory, Albuquerque, NM, 1974)Google Scholar
  47. A.J. Chabai, C.W. Young, P. Yarrington, W.J. Patterson, R.K. Byers, Terradynamic technology – theory and experiment, in Recent Advances in Engineering Science, ed. by G.C. Sih (Lehigh University Publication, Bethlehem, PA, 1977), pp. 67–80Google Scholar
  48. P.J. Chen, Growth of acceleration waves in isotropic elastic materials. J. Acoust. Soc. Am. 43(5), 982–987 (1968a)CrossRefGoogle Scholar
  49. P.J. Chen, Thermodynamic influences on the propagation and the growth of acceleration waves in elastic materials. Arch. Ration. Mech. Anal. 31(3), 228–254 (1968b)MathSciNetzbMATHCrossRefGoogle Scholar
  50. P.J. Chen, Growth and decay of waves in solids, in Handbuch der Physik, Band VIa/3, ed. by S. Flugge (Springer, Berlin, 1973), pp. 303–402Google Scholar
  51. P.J. Chen, J.E. Kennedy, Chemical kinetic and curvature effects on shock-wave evolution in shocked explosives, in Proceedings of the 6th International Detonation Symposium Office of Naval Research Report ONR ACR-221:379-388, ed. by S.J. Jacobs, D.J. Edwards (Office of Naval Research, San Diego, CA, 1976)Google Scholar
  52. P.J. Chen, P.C. Lysne, H.J. Sutherland, Electrical Responses of Ferroelectric Ceramics to Dynamic Loads of Uniaxial Strain Propagation of Shock Waves in Solids (The American Society of Mechanical Engineers, New York, NY, 1976a), pp. 73–78Google Scholar
  53. P.J. Chen, L.W. Davison, M.F. McCarthy, Electrical responses of nonlinear piezoelectric materials to plane waves of uniaxial strain. J. Appl. Phys. 47(11), 4759–4764 (1976b)CrossRefGoogle Scholar
  54. P.J. Chen, S.T. Montgomery, Normal mode responses of linear piezoelectric materials with hexagonal symmetry. Int. J. Solids Struct. 13, 947–955 (1977)CrossRefGoogle Scholar
  55. P.J. Chen, S.T. Montgomery, Boundary effects on the normal-mode responses of linear transversely isotropic piezoelectric materials. J. Appl. Phys. 49(2), 900–904 (1978)CrossRefGoogle Scholar
  56. P.J. Chen, S.T. Montgomery, A macroscopic theory for the existence of the hysteresis and butterfly loops in ferroelectricity. Ferroelectrics 23(1), 199–207 (1980)CrossRefGoogle Scholar
  57. P.J. Chen, T.J. Tucker, One dimensional polar mechanical and dielectric responses of the ferroelectric ceramic PZT 65/35 due to domain switching. Int. J. Eng. Sci. 19, 147–158 (1981)zbMATHCrossRefGoogle Scholar
  58. L.C. Chhabildas, J.R. Asay, Rise-time measurements of shock transitions in aluminum, copper, steel. J. Appl. Phys. 50(4), 2749–2756 (1979)CrossRefGoogle Scholar
  59. L.C. Chhabildas, H.J. Sutherland, J.R. Asay, A velocity interferometer technique to determine shear-wave particle velocity in shock-loaded solids. J. Appl. Phys. 50(8), 5196–5201 (1979)CrossRefGoogle Scholar
  60. L.C. Chhabildas, J.W. Swegle, Dynamic pressure-shear loading of materials using anisotropic crystals. J. Appl. Phys. 51(9), 4799–4807 (1980)CrossRefGoogle Scholar
  61. L.C. Chhabildas, J.R. Asay, Time-resolved wave profile measurements in copper to megabar pressures, in High Pressure in Research and Industry (Proceedings of 6 th AIRAPT and 19 th EHPRG International Conference), ed. by C.-M. Backman, T. Johannisson, L. Tegnér (Arkitektkopia, Uppsala, 1982), pp. 183–189Google Scholar
  62. L.C. Chhabildas, R.D. Hardy, Pressure-shear loading techniques for material-property studies [A paper was prepared on this topic for the Aeroballistic Range Association; hence, ARA members should be able to obtain a CD-ROM containing the collected proceedings]. Sandia National Laboratories Report SAND82-1546 (Sandia National Laboratory, Albuquerque, NM, 1982)Google Scholar
  63. L.C. Chhabildas, J.W. Swegle, On the dynamical response of particulate-loaded materials I. Pressure-shear loading of alumina particles in an epoxy matrix. J. Appl. Phys. 53(2), 954–956 (1982)CrossRefGoogle Scholar
  64. L.C. Chhabildas, D.E. Grady, Dynamic material response of quartz at high strain rates, in High Pressure Science and Technology, Vol 3. Proceedings of the 9th AIRAPT International High Pressure Conference, ed. by C. Homan, R.K. MacCrone, E. Whalley (AIRAPT, Albany, NY, 1984), pp. 147–150Google Scholar
  65. L.C. Chhabildas, M.E. Kipp, Pressure-shear loading of PBX-9404, in Proceedings of the 8th International Detonation Symposium, Navy Report NSWC MP 86-194, ed. by J.M. Short, W.E. Deal (NSWC MP, Albuquerque, NM, 1985), pp. 274–283Google Scholar
  66. L.C. Chhabildas, J.M. Miller, Release-Adiabat Measurements in Crystalline Quartz. Sandia National Laboratories Report SAND85-1092 (Sandia National Laboratory, Albuquerque, NM, 1985)Google Scholar
  67. L.C. Chhabildas, L.M. Barker, Dynamic quasi-isentropic compression of tungsten, in Shock Waves in Condensed Matter, ed. by S.C. Schmidt, N.C. Holmes (Elsevier, Amsterdam, 1988), pp. 111–114Google Scholar
  68. L.C. Chhabildas, J.R. Asay, L.M. Barker, Shear Strength of Tungsten Under Shock- and Quasi-Isentropic Loading to 250 GPa. Sandia National Laboratories Report SAND88-0306 (Sandia National Laboratory, Albuquerque, NM, 1988)Google Scholar
  69. L.C. Chhabildas, M.D. Furnish, W.D. Reinhart, Shock induced melting in aluminum: wave profile measurements, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.D. Furnish, L.C. Chhabildas, R.S. Hixson, vol. 505 (AIP, College Park, MD, 2000a), pp. 97–100Google Scholar
  70. L.C. Chhabildas, W.D. Reinhart, T.F. Thornhill, J.L. Brown, Shock-induced vaporization in metals. Int. J. Impact Eng. 33(1-12), 158–168 (2006)CrossRefGoogle Scholar
  71. J.C. Crowhurst, M.R. Armstrong, B.K. Knight, J.M. Zaug, E.M. Behymer, Invariance of the dissipative action at ultrahigh strain rates above the strong shock threshold. Phys. Rev. Lett. 107, 104322 (2011)CrossRefGoogle Scholar
  72. J.-P. Davis, D.B. Hayes, J.R. Asay, P.W. Watts, P.A. Flores, D.B. Reisman, Investigation of liquid-solid phase transition using Isentropic Compression Experiments (ICE), in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.D. Furnish, N.N. Thadhani, Y. Horie, vol. 620 (AIP, College Park, MD, 2002), pp. 221–224Google Scholar
  73. J.-P. Davis, User Manual for INVICE 0.1-Beta: A Computer Code for Inverse Analysis of Isentropic Compression Experiments. Sandia National Laboratories Report SAND2005–2068 (Sandia National Laboratory, Albuquerque, NM, 2005)Google Scholar
  74. J.-P. Davis, C. Deeney et al., Magnetically driven isentropic compression to multi-megabar pressures using shaped current pulses on the Z accelerator. Phys. Plas. 12, 056310 (2005)CrossRefGoogle Scholar
  75. J.-P. Davis, Experimental measurement of the principal isentrope for aluminum 6061-T6 to 240 GPa. J. Appl. Phys. 99(10), 103512 (2006)CrossRefGoogle Scholar
  76. J.-P. Davis, S. Foiles, Experimental and Computational Study of the Liquid–Solid Transition in Tin. Sandia National Laboratories Report SAND2005-6522 (Sandia National Laboratory, Albuquerque, NM, 2005)Google Scholar
  77. J.-P. Davis, CHARICE Version 1.1 Update. Sandia National Laboratories Report SAND2008-6035 (Sandia National Laboratory, Albuquerque, NM, 2008)Google Scholar
  78. L.W. Davison, J. Kennedy, F. Coffey, Behavior and utilization of explosives in engineering design, Proceedings 12th annual symposium on New Mexico Section of the American Society of Mechanical Engineers (American Society of Mechanical Engineers, New York, NY, 1972)Google Scholar
  79. L.W. Davison, A.L. Stevens, Thermomechanical constitution of spalling elastic bodies. J. Appl. Phys. 44(2), 668–674 (1973)CrossRefGoogle Scholar
  80. L.W. Davison, A.L. Stevens, M.E. Kipp, Theory of spall damage accumulation in ductile metals. J. Mech. Phys. Solids 25, 11–28 (1977)CrossRefGoogle Scholar
  81. D.S. Drumheller, A. Bedford, On a continuum theory for a laminated medium. J. Appl. Mech. 40, 527–532 (1973)CrossRefGoogle Scholar
  82. D.S. Drumheller, C.D. Lundergan, On the behavior of stress waves in composite materials–Part II: theoretical and experimental studies on the effects of constituent debonding. Int. J. Solids Struct. 11, 75–87 (1975)zbMATHCrossRefGoogle Scholar
  83. D.S. Drumheller, The theoretical treatment of a porous solid using a mixture theory. Int. J. Solids Struct. 14, 441–456 (1978)zbMATHCrossRefGoogle Scholar
  84. D.S. Drumheller, A theory for the shock-loaded response of an alumina-filled epoxy mixture, in Shock Waves in Condensed Matter, AIP Conference Proceedings, ed. by W.J. Nellis, L. Seaman, R.A. Graham, vol. 78 (AIP, College Park, MD, 1982a), pp. 527–528Google Scholar
  85. D.S. Drumheller, On the dynamical response of particulate-loaded materials: part II – a theory with application to alumina particles in an epoxy matrix. J. Appl. Phys. 53, 957–969 (1982b)CrossRefGoogle Scholar
  86. D.S. Drumheller, Wavecode Constitutive Models: Nonhomogeneous Mixtures. Sandia National Laboratories Report SAND84-0713 (Sandia National Laboratory, Albuquerque, NM, 1984)Google Scholar
  87. D.S. Drumheller, T.G. Trucano, L.C. Chhabildas, Wavecode Constitutive Models: Particulate-Loaded Composites. Sandia National Laboratories Report SAND84-0714 (Sandia National Laboratory, Albuquerque, NM, 1984)Google Scholar
  88. K.E. Duprey, R.J. Clifton, Pressure shear response of thin tantalum foils, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.D. Furnish, L.C. Chhabildas, R.S. Hixson, vol. 505 (AIP, College Park, MD, 2000), pp. 447–450Google Scholar
  89. I.J. Fritz, R.A. Graham, Second-order elastic constants of high-purity vitreous silica. J. Appl. Phys. 45(9), 4124–4125 (1974)CrossRefGoogle Scholar
  90. M.D. Furnish, L.C. Chhabildas, W.D. Reinhart, Time-resolved particle velocity measurements at impact velocities of 10 km/s. Int. J. Impact Eng. 23(1), 261–270 (1999)CrossRefGoogle Scholar
  91. C.W. Gillard, G.S. Ishikawa, J.E. Peterson, J.L. Rapier, J.C. Stover, N.L. Thomas, Laser Velocimeter Development Program Lockheed Missiles and Space Company, Inc, Research and Development Division Report AD0834874 (Research and Development Division, Lockheed Missiles and Space Company, Inc., Palo Alto, CA, 1968)Google Scholar
  92. D.E. Grady, R.E. Hollenbach, High strain rate studies in rock. Geophys. Res. Lett. 4, 263–266 (1977)CrossRefGoogle Scholar
  93. D.E. Grady, R.E. Hollenbach, K.W. Schuler, J.F. Callender, Strain rate dependence in dolomite inferred from impact and static compression studies. J. Geophys. Res. Solid Earth Planets 82(8), 1325–1333 (1977)CrossRefGoogle Scholar
  94. D.E. Grady, R.E. Hollenbach, K.W. Schuler, Compression wave studies in calcite rock. J. Geophys. Res. 83, 2839–2849 (1978)CrossRefGoogle Scholar
  95. D.E. Grady, Interrelation of flow or fracture and phase transition in the deformation of carbonate rock. J. Geophys. Res. 84(B13), 7549–7555 (1979)CrossRefGoogle Scholar
  96. D.E. Grady, M.E. Kipp, The micromechanics of impact fracture of rock. Int. J. Rock Mech. Mining Sci. 16, 293–302 (1979)CrossRefGoogle Scholar
  97. D.E. Grady, M.E. Kipp, Continuum modeling of explosive fracture in oil shale. Int. J. Rock. Mech. Mining Sci. 17, 149–157 (1980)CrossRefGoogle Scholar
  98. D.E. Grady, Strain-rate dependence of effective viscosity under steady-wave shock compression. Appl. Phys. Lett. 38, 825–826 (1981b)CrossRefGoogle Scholar
  99. D.E. Grady, Structured shock waves and the fourth-power law. J. Appl. Phys. 107, 013506 (2010a)CrossRefGoogle Scholar
  100. D.E. Grady, Unifying role of dissipative action in the dynamic failure of solids. J. Appl. Phys. 117, 165905 (2015)CrossRefGoogle Scholar
  101. D.E. Grady, Diffusion of Dissipative Correlation in the Dynamic Failure of Solids (Applied Research Associates, Albuquerque, NM, 2016)Google Scholar
  102. R.A. Graham, Piezoelectric behavior of impacted quartz. J. Appl. Phys. 32(3), 555 (1961a)CrossRefGoogle Scholar
  103. R.A. Graham, Technique for studying piezoelectricity under transient high stress conditions. Rev. Sci. Instrum. 32(12), 1308–1313 (1961b)CrossRefGoogle Scholar
  104. R.A. Graham, Determination of third- and fourth-order longitudinal elastic constants by shock compression techniques: application to sapphire and fused quartz. J. Acoust. Soc. Am. 51(5), 1576–1581 (1972a)CrossRefGoogle Scholar
  105. R.A. Graham, Strain dependence of longitudinal, piezoelectric elastic, and dielectric constants of X-cut quartz. Phys. Rev. B6(12), 4779–4792 (1972b)CrossRefGoogle Scholar
  106. R.A. Graham, R.D. Jacobson, Lithium niobate stress gauge for pulsed radiation deposition studies. Appl. Phys. Lett. 23(11), 584–586 (1973)CrossRefGoogle Scholar
  107. R.A. Graham, Shock-wave compression of X-cut quartz as determined by electrical response measurements. J. Phys. Chem. Solids 35, 355–372 (1974)CrossRefGoogle Scholar
  108. R.A. Graham, Piezoelectric current from shunted and shorted guard-ring quartz gauges. J. Appl. Phys. 46(5), 1901–1909 (1975)CrossRefGoogle Scholar
  109. R.A. Graham, P.J. Chen, A new electrical to mechanical coupling effect for nonlinear piezoelectric solids. Solid State Commun. 17, 469–471 (1975)CrossRefGoogle Scholar
  110. R.A. Graham, L.C. Yang, Inherent time delay for dielectric breakdown in shock loaded X-cut quartz. J. Appl. Phys. 46(12), 5300–5301 (1975)CrossRefGoogle Scholar
  111. R.A. Graham, Pressure dependence of the piezoelectric polarization of LiNbO3 and LiTaO3. Ferroelectrics 10, 65–69 (1976)CrossRefGoogle Scholar
  112. R.A. Graham, Second- and third-order piezoelectric stress constants of lithium niobate as determined by the impact-loading technique. J. Appl. Phys. 48(6), 2153–2163 (1977)CrossRefGoogle Scholar
  113. R.A. Graham, R.P. Reed (eds.), Selected Papers on Piezoelectricity and Impulsive Pressure Measurements. Sandia National Laboratories Report SAND78-1911 (Sandia National Laboratory, Albuquerque, NM, 1978)Google Scholar
  114. D.R. Hardesty, P.C. Lysne, Shock Initiation and Detonation Properties of Homogeneous Explosives. Sandia National Laboratories Report SLA-74-0165 (Sandia National Laboratory, Albuquerque, NM, 1974)Google Scholar
  115. D.R. Hardesty, An investigation of the shock initiation of liquid nitromethane. Combust. Flame 27, 229–251 (1976a)CrossRefGoogle Scholar
  116. D.R. Hardesty, On the index of refraction of shock-compressed liquid nitromethane. J. Appl. Phys. 47(5), 1994–1998 (1976b)CrossRefGoogle Scholar
  117. D.R. Hardesty, J.E. Kennedy, Thermochemical estimation of explosive energy output. Combust. Flame 43, 45–59 (1977)CrossRefGoogle Scholar
  118. R.S. Hawke, A.R. Susoeff, J.A. Ang, C.H. Konrad, C.A. Hall, G.L. Sauve, A.R. Vasey, Performance of hypervelocity armatures with replenished metal vapor plasmas, in Third European Electromagnetic Launcher Symposium Proceedings (University of California Radiation Laboratory Report UCRL-JC-106828), ed. by University of California Radiation Laboratory (Lawrence Livermore National Laboratory, Livermore, CA, 1991a)Google Scholar
  119. R.S. Hawke, A.R. Susoeff, J.R. Asay, J.A. Ang, C.A. Hall et al., Railgun performance with a two-stage light-gas gun injector. IEEE Trans. Magnet 27, 28–32 (1991b)CrossRefGoogle Scholar
  120. D.B. Hayes, Wave propagation in a condensed medium with N transforming phases: application to solid-I-solid-II-liquid bismuth. J. Appl. Phys. 46, 3438–3443 (1975)CrossRefGoogle Scholar
  121. D.B. Hayes, D.E. Grady, A thermal-viscous model for heterogeneous yielding in aluminum, in Shock Waves in Condensed Matter, AIP Conference Proceedings, ed. by W.J. Nellis, L. Seaman, R.A. Graham, vol. 78 (AIP, College Park, MD, 1982), pp. 412–415Google Scholar
  122. D.B. Hayes, C.A. Hall, J.R. Asay, M.D. Knudson, Continuous index of refraction measurements to 20 GPa in Z-cut sapphire using pulsed magnetic loading. J. Appl. Phys. 94, 2331–2336 (2003)CrossRefGoogle Scholar
  123. D.B. Hayes, C.A. Hall, J.R. Asay, M.D. Knudson, Measurement of the compression isentrope for 6061-T6 aluminum to 185 GPa and 46% volumetric strain using pulsed magnetic loading. J. Appl. Phys. 96(10), 5520–5527 (2004)CrossRefGoogle Scholar
  124. G.E. Ingram, R.A. Graham, Quartz gauge technique for impact experiments, in Fifth Symposium (International) on Detonation, Office of Naval Research Document ACR 184, ed. by Office of Naval Research (US Government Printing Office, San Diego, CA, 1970), pp. 369–386Google Scholar
  125. J.N. Johnson, Shock propagation produced by planar impact in linearly elastic anisotropic media. J. Appl. Phys. 42(13), 5522–5530 (1971)CrossRefGoogle Scholar
  126. J.N. Johnson, J.R. Asay, D.B. Hayes, Equations of state and shock-induced transformations in solid-I, solid-II, liquid bismuth. J. Phys. Chem. Solids 35, 501–515 (1974)CrossRefGoogle Scholar
  127. J.E. Kennedy, Quartz gauge study of upstream reaction in a shocked explosive, in Proceedings of the 5th International Detonation Symposium, Pasadena, CA, Office of Naval Research Report ONR ACR-184, ed. by S.J. Jacobs, R. Roberts (Office of Naval Research, San Diego, CA, 1970), pp. 435–445Google Scholar
  128. J.E. Kennedy, Gurney Energy of Explosives: Estimation of the Velocity and Impulse Imparted to Driven Metal Sandia Report SC-RR-70-790 (Sandia National Laboratory, Albuquerque, NM, 1971)Google Scholar
  129. J.E. Kennedy, Explosive output for driving metal, in Behavior and Utilization of Explosives in Engineering Design, Proceedings 12th Annual Symposium New Mexico Section of American Society of Mechanical Engineers, ed. by L.W. Davison et al. (New Mexico Section of American Society of Mechanical Engineers, New Mexico, 1972), pp. 109–124Google Scholar
  130. J.E. Kennedy, Pressure Field in a Shock-Compressed High Explosive. Proceedings Fourteenth Symposium (International) on Combustion (The Combustion Institute) [Also, Sandia National Laboratories Report SC-DC-721254], Vol 14 (Sandia National Laboratory, Albuquerque, NM, 1973), pp. 1251–1258Google Scholar
  131. J.E. Kennedy, A.C. Schwarz, Detonation Transfer by Flyer Plate Impact. Proceedings 8th Symposium on Explosives and Pyrotechnics , Los Angeles, CA, February 5, 1974. [Also, Sandia National Laboratories Report SLA 74-5073, Albuquerque, NM (Franklin Institute, Philadelphia, PA, 1974)Google Scholar
  132. J.E. Kennedy, J.W. Nunziato, Shock-wave evolution in a chemically reacting solid. J. Mech. Phys. Solids 40, 107–124 (1976)zbMATHCrossRefGoogle Scholar
  133. J.E. Kennedy, J.W. Nunziato, D.R. Hardesty, Initiation and detonation studies of condensed explosives using interferometric techniques. Acta Astronaut. 3, 811–823 (1976)CrossRefGoogle Scholar
  134. M.E. Kipp, A.L. Stevens, Numerical Integration of a Spall-Damage Viscoplastic Constitutive Model in a One-Dimensional Wave Propagation Code. Sandia National Laboratories Report SAND76-0061 (Sandia National Laboratory, Albuquerque, NM, 1976)Google Scholar
  135. M.E. Kipp, Calculation of Borehole Springing in Oil Shale (Rock Springs Site 6A). Sandia National Laboratories Report SAND77-1501 (Sandia National Laboratory, Albuquerque, NM, 1979)Google Scholar
  136. M.E. Kipp, L.W. Davison, Analyses of ductile flow and fracture in two dimensions, in Shock Waves in Condensed Matter, AIP Conference Proceedings, ed. by W.J. Nellis, L. Seaman, R.A. Graham, vol. 78 (AIP, College Park, MD, 1982), pp. 442–445Google Scholar
  137. M.D. Knudson, D.L. Hanson, J.E. Bailey, C.A. Hall, J.R. Asay, W.W. Anderson, Equation of state measurements in liquid deuterium to 70 GPa. Phys. Rev. Lett. 87, 225501 (2001)CrossRefGoogle Scholar
  138. M.D. Knudson, D.L. Hanson, J.E. Bailey, R.W. Lemke, C.A. Hall, C. Deeney, J.R. Asay, Equation of state measurements in liquid deuterium to 100 GPa. J. Phys. A: Math. Gen. 36(22), 6149–6158 (2003a)CrossRefGoogle Scholar
  139. M.D. Knudson, C.A. Hall, R. Lemke, C. Deeney, J.R. Asay, High velocity flyer plate launch capability on the Sandia Z accelerator. Int. J. Impact Eng. 29, 377–384 (2003d)CrossRefGoogle Scholar
  140. M.D. Knudson, M.P. Desjarlais, D.H. Dolan, Shock-wave exploration of the high-pressure phases of carbon. Science 322, 1822–1825 (2008)CrossRefGoogle Scholar
  141. M.D. Knudson, M.P. Desjarlais, Shock compression of quartz to 1.6 TPa: redefining a pressure standard. Phys. Rev. Lett. 103, 225501 (2009)CrossRefGoogle Scholar
  142. M.D. Knudson, M.P. Desjarlais, R.W. Lemke, T.R. Mattsson, Probing the interiors of the ice giants: shock compression of water to 700 GPa and 38 g/cc. Phys Rev Lett 108, 091102 (2012)CrossRefGoogle Scholar
  143. R.J. Lawrence, WONDY IIIA: A Computer Program for One-Dimensional Wave Propagation. Sandia National Laboratories Report SC-DR-70-315 (Sandia National Laboratory, Albuquerque, NM, 1970)Google Scholar
  144. R.J. Lawrence, L.W. Davison, Analysis of Nonlinear Plane-Wave Propagation in Piezoelectric Solids. Sandia National Laboratories Report SAND77-0217 (Sandia National Laboratory, Albuquerque, NM, 1977)Google Scholar
  145. L.M. Lee, Shock Response of Distended CVD Carbon Felt. Sandia National Laboratories Report SC-RR-72-0814 (Sandia National Laboratory, Albuquerque, NM, 1972)Google Scholar
  146. L.M. Lee, Low Stress Shock Behavior of Cellular Concrete. Sandia National Laboratories Report SLA-73-0164 (Sandia National Laboratory, Albuquerque, NM, 1973a)Google Scholar
  147. R.W. Lemke, M.D. Knudson, J.-P. Davis, Magnetically driven hyper-velocity launch capability at the Sandia Z accelerator. J. Impact Eng. 38, 480–485 (2011)CrossRefGoogle Scholar
  148. C.D. Lundergan, Discussion of the transmitted waveforms in a periodic laminated composite. J. Appl. Phys. 42(11), 4148–4155 (1970)CrossRefGoogle Scholar
  149. C.D. Lundergan, D.S. Drumheller, Dispersion of shock waves in composite materials, in Shock Waves and the Mechanical Properties of Solids, Vol 17 (Proceedings of 17th Sagamore Army Materials Research Center Conference), ed. by J.J. Burke, V. Weiss (Syracuse University Press, Syracuse, NY, 1971a), pp. 141–145Google Scholar
  150. C.D. Lundergan, D.S. Drumheller, Propagation of stress waves in a laminated plate composite. J. Appl. Phys. 42, 669–675 (1971b)CrossRefGoogle Scholar
  151. P.C. Lysne, A comparison of calculated and measured low-stress Hugoniots and release adiabats of dry and water-saturated tuff. J. Geophys. Res. 75, 4375–4386 (1970)CrossRefGoogle Scholar
  152. P.C. Lysne, One-dimensional theory of polarization by shock waves: application to quartz gauges. J. Appl. Phys. 43, 425–431 (1972b)CrossRefGoogle Scholar
  153. P.C. Lysne, D.R. Hardesty, Fundamental equation of state of liquid nitromethane to 100 kbar. J. Chem. Phys. 59(12), 6512–6523 (1973)CrossRefGoogle Scholar
  154. P.C. Lysne, Prediction of dielectric breakdown in shock-loaded ferroelectric ceramics. J. Appl. Phys. 46, 230–232 (1975)CrossRefGoogle Scholar
  155. P.C. Lysne, L.C. Bartel, Electromechanical response of PZT 65/35 subjected to axial shock loading. J. Appl. Phys. 46, 222–229 (1975)CrossRefGoogle Scholar
  156. P.C. Lysne, Dielectric properties of shock wave compressed PZT 95/5. J. Appl. Phys. 48, 1020–1023 (1976)CrossRefGoogle Scholar
  157. P.C. Lysne, Shock-induced polarization of a ferroelectric ceramic. J. Appl. Phys. 48, 1024–1031 (1977)CrossRefGoogle Scholar
  158. P.C. Lysne, Dielectric relaxation in insulators slightly damaged by stress pulses. J. Appl. Phys. 54, 3160–3165 (1983)CrossRefGoogle Scholar
  159. D.E. Munson, K.W. Schuler, Hugoniot predictions for mechanical mixtures using effective moduli, in Shock Waves and the Mechanical Properties of Solids, ed. by J. Burke, V. Weiss (Syracuse University Press, Syracuse, NY, 1971), pp. 185–201Google Scholar
  160. D. Munson, R. May, Interior Ballistics of a Two-Stage Light Gas Gun. Sandia National Laboratories Report SAND75-0323 (Sandia National Laboratory, Albuquerque, NM, 1975)Google Scholar
  161. D.E. Munson, R.R. Boade, K.W. Schuler, Stress wave propagation in A12O3-epoxy mixtures. J. Appl. Phys. 49, 4797–4807 (1977)CrossRefGoogle Scholar
  162. F.W. Neilson, W.B. Benedick, The piezoelectric response of quartz beyond its Hugoniot elastic limit. Bull. Am. Phys. Soc. Ser. II 5(7), 511 (1960)Google Scholar
  163. J.W. Nunziato, Acceleration waves in elastic materials with two temperatures. Int. J. Nonlinear Mech. 10, 137–142 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  164. J.W. Nunziato, K.W. Schuler, E.K. Walsh, The influence of precompression on acceleration wave propagation in a nonlinear viscoelastic material. J. Appl. Mech. 42, 731–732 (1975)CrossRefGoogle Scholar
  165. J.W. Nunziato, J.E. Kennedy, Shock-wave evolution in a chemically reacting solid. J. Mech. Phys. Solids 24, 107–124 (1976)zbMATHCrossRefGoogle Scholar
  166. J.W. Nunziato, J.E. Kennedy, D.E. Amos, The thermal ignition time for homogeneous explosives involving two parallel reactions. Combust. Flame 43, 265–268 (1977)CrossRefGoogle Scholar
  167. J.W. Nunziato, E.K. Walsh, J.E. Kennedy, A continuum model for hot-spot initiation of granular explosives, in Behaviour of Dense Media under High Dynamic Pressures, ed. by IUTAM (CEA, Paris, 1978a), pp. 139–148Google Scholar
  168. J.W. Nunziato, E.K. Walsh, J.E. Kennedy, Behavior of one-dimensional acceleration waves in an inhomogeneous granular solid. Int. J. Eng. Sci. 16, 637–648 (1978b)zbMATHCrossRefGoogle Scholar
  169. J.W. Nunziato, M.E. Kipp, Numerical Studies of Initiation, Detonation, and Detonation Failure in Nitromethane. Sandia National Laboratories Report No. SAND81-0669 (Sandia National Laboratory, Albuquerque, NM, 1983)Google Scholar
  170. J.W. Nunziato, Initiation and growth-to-detonation in reactive mixtures, in Shock Compression of Condensed Matter, ed. by J.R. Asay, R.A. Graham, G.K. Straub (Elsevier, Amsterdam, 1984), pp. 581–588Google Scholar
  171. L.E. Pope, A.L. Stevens, Wave propagation in beryllium single crystals, in Metallurgical Effects at High Strain Rates, ed. by R.W. Rohde, B.M. Butcher, J.R. Holland, C.H. Karnes (Plenum, New York, NY, 1973), pp. 349–366CrossRefGoogle Scholar
  172. L.E. Pope, J.N. Johnson, Shock-wave compression of single-crystal beryllium. J. Appl. Phys. 46(2), 720–729 (1975)CrossRefGoogle Scholar
  173. A.M. Renlund, W.M. Trott, Spectrographic studies of shocked and detonating explosives, in Shock Waves in Condensed Matter, ed. by S.C. Schmidt, N.C. Holmes (Elsevier, New York, NY, 1988), pp. 547–552Google Scholar
  174. A.M. Renlund, P.L. Stanton, W.M. Trott, Laser initiation of secondary explosives, in Proceedings of the 9th International Detonation Symposium, Office of Naval Research Report ONR 113291-7, ed. by J.M. Short, E.L. Lee (Office of Naval Research, San Diego, CA, 1989), pp. 1118–1127Google Scholar
  175. A.M. Renlund, W.M. Trott, Raman spectroscopic studies of shock-compressed nitromethane-d3, in Shock Compression of Condensed Matter, ed. by S.C. Schmidt, J.N. Johnson, L.W. Davison (Elsevier, New York, NY, 1990), pp. 875–878Google Scholar
  176. S. Root, J.R. Asay, Loading path and rate dependence of inelastic deformation: X-cut quartz. J. Appl. Phys. 106, 056109 (2009a)CrossRefGoogle Scholar
  177. S. Root, J.R. Asay, Loading path dependence of inelastic behavior: X-cut quartz, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.L. Elert, W.T. Buttler, M.D. Furnish, W.W. Anderson, W.G. Proud, vol. 1195 (VIP, College Park, MD, 2009b), pp. 999–1002Google Scholar
  178. K.W. Schuler, P.C. Lysne, A.L. Stevens, Dynamic mechanical properties of two grades of oil shale. Intl. J. Rock Mech. Min. Sci. 13, 91–95 (1976)CrossRefGoogle Scholar
  179. K.W. Schuler, R.A. Schmidt, Mechanical properties of oil shale of importance to in-situ rubblization, in Proceedings of the American Nuclear Society Topical Meeting Energy and Mineral Resource Recovery, ed. by ANS (ANS, Nashville, TN, 1977), pp. 381–391Google Scholar
  180. R.E. Setchell, Ramp-wave initiation of granular explosives. Combust. Flame 43, 255–264 (1981)CrossRefGoogle Scholar
  181. R.E. Setchell, Short-pulse shock initiation of granular explosives, in Proceedings of the 7th International Detonation Symposium, Navy Report NSWC MP 82-334, ed. by J.M. Short, S.J. Jacobs (NSWC, Annapolis, MD, 1982), pp. 857–864Google Scholar
  182. R.E. Setchell, Effects of precursor waves in shock initiation of granular explosives. Combust. Flame 54, 171–182 (1983)CrossRefGoogle Scholar
  183. R.E. Setchell, Grain-size effects on the shock sensitivity of HNS explosives. Combust. Flame 56, 343–345 (1984)CrossRefGoogle Scholar
  184. R.E. Setchell, Experimental studies of chemical reactivity during shock initiation of hexanitrostilbene, in Proceedings of the 8th International Detonation Symposium, Albuquerque, NM, Navy Report NSWC MP 86-194, ed. by J.M. Short, W.E. Deal (NSWC, Albuquerque, NM, 1986), pp. 15–25Google Scholar
  185. R.E. Setchell, Microstructural effects in shock initiation of granular explosives, in Proceedings of the International Symposium on Pyrotechnics and Explosives, ed. by D. Jing (China Academic Publishers, Beijing, 1987), p. 635Google Scholar
  186. A.L. Stevens, O.E. Jones, Radial stress release phenomena in plate impact experiments: compression-release. J. Appl. Mech. Trans. ASME 39, 359–366 (1972)CrossRefGoogle Scholar
  187. A.L. Stevens, L.W. Davison, W.E. Warren, Spall fracture in aluminum monocrystals: a dislocation-dynamics approach. J. Appl. Phys. 43(12), 4922–4927 (1972)CrossRefGoogle Scholar
  188. A.L. Stevens, L.E. Pope, Wave propagation and spallation in textured beryllium, in Metallurgical Effects at High Strain Rates, ed. by R.W. Rohde, B.M. Butcher, J.R. Holland, C.H. Karnes (Plenum, New York, NY, 1973), pp. 459–472CrossRefGoogle Scholar
  189. A.L. Stevens, L.W. Davison, W.E. Warren, Void growth during spall fracture of aluminum monocrystals, in Dynamic Crack Propagation, ed. by G.C. Sih (Noordhoff, Leyden, 1973), pp. 37–48CrossRefGoogle Scholar
  190. A.L. Stevens, Residual Mechanical Properties of Textured and Spall-Damaged Beryllium (AIAA, Las Vegas, NV, 1974). Presented at the AIAA/ASME/SAE 15th Structures, Structural Dynamics and Materials Conference, AIAA Paper No. 74–399, Las Vegas, NV, April 17–19, 1974CrossRefGoogle Scholar
  191. A.L. Stevens, P.C. Lysne, G.B. Griswold, Rock Springs Oil Shale Fracturization Experiment: Experimental Results and Concept Evaluation. Sandia National Laboratories Report SAND74-0372 (Sandia National Laboratory, Albuquerque, NM, 1974)Google Scholar
  192. J.W. Swegle, L.C. Chhabildas, Technique for the generation of pressure-shear loading using anisotropic crystals, in Shock Waves and High Strain-Rate Phenomena in Metals, ed. by M. Meyers, L. Murr (Springer, New York, NY, 1981), pp. 401–415CrossRefGoogle Scholar
  193. J.W. Swegle, D.E. Grady, Shock viscosity and the prediction of shock wave rise times. J. Appl. Phys. 58(2), 692–701 (1985)CrossRefGoogle Scholar
  194. J.W. Swegle, D.E. Grady, Calculation of thermal trapping in shear bands, in Metallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena, ed. by L.E. Murr, K.P. Staudhammer, M.A. Meyers (Marcel Dekker, New York, NY, 1986a), pp. 705–722Google Scholar
  195. J.W. Swegle, D.E. Grady, Shock viscosity and the calculations of steady shock wave profiles, in Shock Waves in Condensed Matter, ed. by Y.M. Gupta (Plenum, New York, NY, 1986b), pp. 353–357CrossRefGoogle Scholar
  196. S.L. Thompson, CKEOS2 – An Equation of State Test Program for the CHARTD/CSQ EOS Package. Sandia National Laboratories Report SAND76–0175 (Sandia National Laboratory, Albuquerque, NM, 1976)Google Scholar
  197. S.L. Thompson, CSQII – An Eulerian Finite Difference Program for Two-Dimensional Material Response – Part 1 Material Sections. Sandia National Laboratories Report SAND77-1339 (Sandia National Laboratory, Albuquerque, NM, 1979)Google Scholar
  198. B.J. Thorne, W. Herrmann, TOODY: A Computer Program for Calculating Problems of Motion in Two Dimension. Sandia National Laboratories Report SC-RR-66-602 (Sandia National Laboratory, Albuquerque, NM, 1967)Google Scholar
  199. W.M. Trott, M.D. Knudson, L.C. Chhabildas, J.R. Asay, Measurements of spatially resolved velocity variations in shock compressed heterogeneous materials using a line-imaging velocity interferometer, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.D. Furnish, L.C. Chhabildas, R.S. Hixson, vol. 505 (AIP, College Park, MD, 2000), pp. 993–998Google Scholar
  200. W.M. Trott, J.N. Castañeda, J.J. O'Hare, M.D. Knudson, L.C. Chhabildas, M.R. Baer, J.R. Asay, Examination of the mesoscopic scale response of shock compressed heterogeneous materials using a line-imaging velocity interferometer, in Fundamental Issues and Applications of Shock-Wave and High-Strain-Rate Phenomena, ed. by K.P. Staudhammer, L.E. Murr, M.A. Meyers (Elsevier, New York, NY, 2001), pp. 647–654Google Scholar
  201. W.M. Trott, R.E. Setchell, A.V. Farnsworth Jr., Development of laser-driven flyer techniques for equation-of-state studies of microscale materials, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.D. Furnish, N.N. Thadhani, Y. Horie, vol. 505 (AIP, College Park, MD, 2002), pp. 1347–1350Google Scholar
  202. W.M. Trott, M.R. Baer, J.N. Castañeda, A.S. Tappan, J.N. Stuecker, J. Cesarano, Shock-induced reaction in a nitromethane-impregnated geometrically regular sample configuration, in Proceedings of the 13th International Detonation Symposium, Office of Naval Research Report ONR Report 351-07-01:308-318, ed. by S. Peiris, R.M. Doherty (Office of Naval Research, San Diego, CA, 2006)Google Scholar
  203. W.M. Trott, M.R. Baer, J.N. Castañeda, L.C. Chhabildas, J.R. Asay, Investigation of the mesoscopic scale response of low-density pressings of granular sugar under impact. J. Appl. Phys. 101(2), 024917 (2007)CrossRefGoogle Scholar
  204. T.J. Vogler, C.S. Alexander, T.F. Thornhill, W.D. Reinhart, Pressure-Shear Experiments on Granular Materials. Sandia National Laboratories Report SAND2011-6700 (Sandia National Laboratory, Albuquerque, NM, 2011)Google Scholar
  205. T.J. Vogler, J.P. Borg, D.E. Grady, On the nature of steady structured waves in heterogeneous materials. J. Appl. Phys. 112, 123507 (2012)CrossRefGoogle Scholar
  206. J.L. Wise, L.C. Chhabildas, J.R. Asay, Shock compression of beryllium, in Shock Waves in Condensed Matter, AIP Conference Proceedings, ed. by W.J. Nellis, L. Seaman, R.A. Graham, vol. 78 (AIP, College Park, MD, 1982), pp. 417–421Google Scholar

Copyright information

© Jointly by Sandia Corporation and the Authors 2017

Authors and Affiliations

  • James R. Asay
    • 1
  • Lalit C. Chhabildas
    • 1
  • R. Jeffery Lawrence
    • 1
  • Mary Ann Sweeney
    • 1
  1. 1.Sandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations