Advertisement

Chapter 2 The 1950s: Origins

  • James R. Asay
  • Lalit C. Chhabildas
  • R. Jeffery Lawrence
  • Mary Ann Sweeney
Chapter
  • 522 Downloads
Part of the Shock Wave and High Pressure Phenomena book series (SHOCKWAVE)

Abstract

Shock compression science, in its modern form, evolved from the early work conducted at Los Alamos resulting from the Manhattan Project. That work, of course, was an important aspect of the development of nuclear weapons, first the fission bomb toward the end of World War II and then the fusion bomb, both of which were mainstays of the Cold War era.

Keywords

Shock Wave Nuclear Weapon Shock Wave Structure Flyer Plate Nevada Test Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. L.M. Barker, Measurement of Free Surface Motion by the Slanted Resistor Technology. Sandia National Laboratories Report SC-DR-610078 (Sandia National Laborator, Albuquerque, NM, 1961)Google Scholar
  2. L.M. Barker, Determination of Shock Wave and Particle Velocities from Slanted Resistor Data. Sandia National Laboratories Report SC004611 (RR) (Sandia National Laboratory, Albuquerque, NM, 1962)Google Scholar
  3. R.C. Bass, B.C. Benjamin, H.M. Miller, D.R. Breding, SLIFER measurement for explosive yield. Sandia National Laboratories Report SAND76-0007 (Sandia National Laboratory, Albuquerque, NM, 1976)Google Scholar
  4. W.B. Benedick, Air guns and the Use of Air Propelled Projectiles. Sandia National Laboratories Technical Memorandum SCTM560079-51 (Sandia National Laboratory, Albuquerque, NM, 1956)Google Scholar
  5. R.A. Benham, Light-Initiated Explosive for Impulse Measurements on Structural Members. Sandia National Laboratories Report SAND75-0516 (Sandia National Laboratory, Albuquerque, NM, 1976)Google Scholar
  6. M.B. Boslough, J.R. Asay, Basic principles of shock compression (Chapter 2), in High-Pressure Shock Compression of Solids, ed. by J.R. Asay, M. Shahinpoor (Springer, New York, NY, 1993), pp. 7–42CrossRefGoogle Scholar
  7. A.J. Chabai, Crater scaling laws for desert alluvium. Sandia National Laboratories Report SC-4391 (RR) (Sandia National Laboratory, Albuquerque, NM, 1959)Google Scholar
  8. A.J. Chabai, D.M. Hankins, Gravity scaling laws for explosion craters. Sandia National Laboratories Report SC-4541 (RR) (Sandia National Laboratory, Albuquerque, NM, 1960)Google Scholar
  9. A.J. Chabai, On scaling dimensions of craters produced by buried explosions. J. Geophys. Res. 70, 5075–5098 (1965)CrossRefGoogle Scholar
  10. L.W. Davison, R.A. Graham, Shock compression of solids. Physics Reports 55(4), 255–359 (1979)CrossRefGoogle Scholar
  11. L.W. Davison, Fundamentals of Shock Wave Propagation in Solids (Springer, Berlin, 2008)zbMATHGoogle Scholar
  12. D.S. Drumheller, Introduction to Wave Propagation in Nonlinear Fluids and Solids (Cambridge University Press, New York, NY, 1998)CrossRefGoogle Scholar
  13. J.W. Forbes, Shock Wave Compression of Condensed Matter: A Primer (Springer, Berlin, 2012)CrossRefGoogle Scholar
  14. R.A. Graham, Impact Physics. Sandia National Laboratories Report SCR-59 (Sandia National Laboratory, Albuquerque, NM, 1958)Google Scholar
  15. R.A. Graham, Piezoelectric behavior of impacted quartz. J. Appl. Phys. 32(3), 555 (1961a)CrossRefGoogle Scholar
  16. R.A. Graham, Technique for studying piezoelectricity under transient high stress conditions. Rev. Sci. Instrum. 32(12), 1308–1313 (1961b)CrossRefGoogle Scholar
  17. R.A. Graham, G.E. Ingram, W.D. Ingram, Performance of a High Velocity Powder Gun. Sandia National Laboratories Research Report SC-4652 (RR) (Sandia National Laboratory, Albuquerque, NM, 1961)Google Scholar
  18. R.A. Graham, Dielectric anomaly in quartz for high transient stress and field. J. Appl. Phys. 33(5), 1755–1758 (1962)CrossRefGoogle Scholar
  19. R.A. Graham, O.E. Jones, J.R. Holland, Shock-wave compression of germanium from 20 to 140 kbar. J. Appl. Phys. 36, 3955–3956 (1965a)CrossRefGoogle Scholar
  20. R.A. Graham, F.W. Neilson, W.B. Benedick, Piezoelectric current from shock-loaded quartz – a submicrosecond stress gauge. J. Appl. Phys. 36(5), 1775–1783 (1965b)CrossRefGoogle Scholar
  21. R.A. Graham, Impact techniques for the study of physical properties of solids under shock-wave loading. J. Basic Eng. Trans. ASME 89, 911–918 (1967)CrossRefGoogle Scholar
  22. R.A. Graham, D.H. Anderson, J.R. Holland, Shock wave compression of 30% Ni – 70% Fe alloys: the pressure-induced magnetic transition. J. Appl. Phys. 38, 223–229 (1967a)CrossRefGoogle Scholar
  23. O.E. Jones, F.W. Neilson, W.B. Benedick, Dynamic yield behavior of explosively loaded metals determined by a quartz transducer technique. J. Appl. Phys. 33(11), 3224–3232 (1962)CrossRefGoogle Scholar
  24. O.E. Jones, J.R. Holland, Bauschinger effect in explosively loaded mild steel. J. Appl. Phys. 35, 1771–1773 (1964)CrossRefGoogle Scholar
  25. O.E. Jones, Piezoelectric and mechanical behavior of X-cut quartz shock loaded at 79 degrees K. Rev. Sci. Instrum. 38(2), 253–256 (1967)CrossRefGoogle Scholar
  26. O.E. Jones, J.R. Holland, Effects of grain size on dynamic yielding in explosively loaded mild steel. Acta Metall. 16, 1037–1045 (1968)CrossRefGoogle Scholar
  27. O.E. Jones, J.D. Mote, Shock-induced dynamic yielding in copper single crystals. J. Appl. Phys. 40(12), 4920–4928 (1969)CrossRefGoogle Scholar
  28. R.W. Kulterman, F.W. Neilson, W.B. Benedick, Pulse generator based on high shock demagnetization of ferromagnetic material. J. Appl. Phys. 29, 500–501 (1958)CrossRefGoogle Scholar
  29. C.D. Lundergan, Sandia National Laboratories Report SC-TM-141-57 (12) Contact FUZING STUDY-FIRST Report (Sandia National Laboratory, Albuquerque, NM, 1957)Google Scholar
  30. C.D. Lundergan, A Method for Measuring (1) the Parameter of Impact Between Two Surfaces and (2) the Properties of the Plane Shock waves Produced. Sandia National Laboratories Report SC-4421 (Sandia National Laboratory, Albuquerque, NM, 1960)Google Scholar
  31. C.D. Lundergan, The Hugoniot Equation of State of 6061-T6 Aluminum at Low Pressures. Sandia National Laboratories Report SC-4637 (RR) (Sandia National Laboratory, Albuquerque, NM, 1961)Google Scholar
  32. F.W. Neilson, W.B. Benedick, The piezoelectric response of quartz beyond its Hugoniot elastic limit. Bull. Am. Phys. Soc. Ser. II 5(7), 511 (1960)Google Scholar
  33. F.W. Neilson, W.B. Benedick, W.P. Brooks, R.A. Graham, G.W. Anderson, Electrical and optical effects of shock waves in crystalline quartz, in Les Ondes de Detonation, ed. by G. Ribaud (Centre National de la Recherche Scientifique, Paris, 1962), pp. 391–419Google Scholar
  34. J.H. Smith, L.M. Barker, Measurement of Tilt, Impact Velocity, and Impact Time Between Two Plane Surfaces. Sandia National Laboratories Report SC-4728 (RR) (Sandia National Laboratory, Albuquerque, NM, 1962)Google Scholar

Copyright information

© Jointly by Sandia Corporation and the Authors 2017

Authors and Affiliations

  • James R. Asay
    • 1
  • Lalit C. Chhabildas
    • 1
  • R. Jeffery Lawrence
    • 1
  • Mary Ann Sweeney
    • 1
  1. 1.Sandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations