Biostatistics for the Intensivist: A Clinically Oriented Guide to Research Analysis and Interpretation

  • Heidi H. Hon
  • Jill C. Stoltzfus
  • Stanislaw P. Stawicki
Chapter

Abstract

Statistical analysis is an integral and necessary part of being a clinician. Applying the results of statistical analysis can change clinical practices in a meaningful way. Consequently, this biostatistics chapter has been created to provide a basic understanding of statistics as applied to the analysis of research studies. This chapter outlines the basic mechanics of statistics, describes different study types, and explains statistical testing from a practical perspective.

Keywords

Biostatistics Clinician Statistical testing Study designs Confidence intervals Correlation Regression analysis 

References

  1. 1.
    Slee VN. Statistics influence medical practice. Mod Hosp. 1954;83(1):55–8.PubMedGoogle Scholar
  2. 2.
    Lancaster HO. Statistics and medical practice. Med J Aust. 1982;1(9):366.PubMedGoogle Scholar
  3. 3.
    Stawicki SP, et al. Fundamentals of patient safety in medicine & surgery. 1st ed. New Delhi: Wolters Kluwer (India) Pvt. Ltd; 2015.Google Scholar
  4. 4.
    McCluskey A, Lalkhen AG. Statistics IV: interpreting the results of statistical tests. Contin Educ Anaesth Crit Care Pain. 2007;7(6):208–12.CrossRefGoogle Scholar
  5. 5.
    Lieberman MD, Cunningham WA. Type I and Type II error concerns in fMRI research: re-balancing the scale. Soc Cogn Affect Neurosci. 2009;4(4):423–8.CrossRefGoogle Scholar
  6. 6.
    Greenfield ML, Kuhn JE, Wojtys EM. A statistics primer. P values: probability and clinical significance. Am J Sports Med. 1996;24(6):863–5.CrossRefGoogle Scholar
  7. 7.
    Rosen BL, DeMaria AL. Statistical significance vs. practical significance: an exploration through health education. Am J Health Edu. 2012;43(4):235–41.CrossRefGoogle Scholar
  8. 8.
    Case LD, Ambrosius WT. Power and sample size. Methods Mol Biol. 2007;404:377–408.CrossRefGoogle Scholar
  9. 9.
    Freedman KB, Back S, Bernstein J. Sample size and statistical power of randomised, controlled trials in orthopaedics. J Bone Joint Surg Br. 2001;83(3):397–402.CrossRefGoogle Scholar
  10. 10.
    Jaykaran PY, Kantharia ND. Reporting of sample size and power in negative clinical trials published in Indian medical journals. J Pharm Negat Results. 2011;2(2):87–90.CrossRefGoogle Scholar
  11. 11.
    Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale: L. Erlbaum Associates; 1988. p. 567.Google Scholar
  12. 12.
    Boxer PJ. Notes on Checkland’s soft systems methodology. 1994 [May 3, 2015]; Available from: http://web.archive.org/web/20091229162231/http://www.brl.com/pdfs/checklnd.pdf.
  13. 13.
    GraphPad. What is the difference between Type I, Type II, and Type III errors? 2015 [May 3, 2015]; Available from: http://graphpad.com/support/faqid/1080/.
  14. 14.
    Rothman KJ, Greenland S, Lash TL. Modern epidemiology. 3rd ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2008. p. 758. x.Google Scholar
  15. 15.
    Hill HA, Kleinbaum DG. Bias in observational studies. Encyclopedia Biostatistics. 2005. 1.Google Scholar
  16. 16.
    Sica GT. Bias in research studies. Radiology. 2006;238(3):780–9.CrossRefGoogle Scholar
  17. 17.
    Pannucci CJ, Wilkins EG. Identifying and avoiding bias in research. Plast Reconstr Surg. 2010;126(2):619–25.CrossRefGoogle Scholar
  18. 18.
    Duffy SW, et al. Correcting for lead time and length bias in estimating the effect of screen detection on cancer survival. Am J Epidemiol. 2008;168(1):98–104.CrossRefGoogle Scholar
  19. 19.
    Hennessy S, et al. Factors influencing the optimal control-to-case ratio in matched case-control studies. Am J Epidemiol. 1999;149(2):195–7.CrossRefGoogle Scholar
  20. 20.
    ResearchGate. What is the rationale for 1:2 ratio in case-control studies? 2015 [May 3, 2015]; Available from: https://www.researchgate.net/post/What_is_the_Rationale_for_12_ratio_in_Case_Control_studies.
  21. 21.
    Grimes DA, Schulz KF. Descriptive studies: what they can and cannot do. Lancet. 2002;359(9301):145–9.CrossRefGoogle Scholar
  22. 22.
    Zollinger RM, Ellison EH. Primary peptic ulcerations of the jejunum associated with islet cell tumors of the pancreas. Ann Surg. 1955;142(4):709–23; discussion, 724–8.CrossRefGoogle Scholar
  23. 23.
    Grimes DA, Schulz KF. An overview of clinical research: the lay of the land. Lancet. 2002;359(9300):57–61.CrossRefGoogle Scholar
  24. 24.
    Grimes DA, Schulz KF. Cohort studies: marching towards outcomes. Lancet. 2002;359(9303):341–5.CrossRefGoogle Scholar
  25. 25.
    Barton S. Which clinical studies provide the best evidence? The best RCT still trumps the best observational study. BMJ. 2000;321(7256):255–6.CrossRefGoogle Scholar
  26. 26.
    Ioannidis JP. Interpretation of tests of heterogeneity and bias in meta-analysis. J Eval Clin Pract. 2008;14(5):951–7.CrossRefGoogle Scholar
  27. 27.
    McNutt LA, et al. Estimating the relative risk in cohort studies and clinical trials of common outcomes. Am J Epidemiol. 2003;157(10):940–3.CrossRefGoogle Scholar
  28. 28.
    Wilber ST, Fu R. Risk ratios and odds ratios for common events in cross-sectional and cohort studies. Acad Emerg Med. 2010;17(6):649–51.CrossRefGoogle Scholar
  29. 29.
    Stawicki SP. Guide to free statistical software: general applications. OPUS 12 Sci. 2010;4(1):12–3.Google Scholar
  30. 30.
    Stawicki SP. Guide to statistical software: meta-analysis applications. OPUS 12 Sci. 2011;5(1):4–5.Google Scholar
  31. 31.
    Larson MG. Descriptive statistics and graphical displays. Circulation. 2006;114(1):76–81.CrossRefGoogle Scholar
  32. 32.
    Onchiri S. Conceptual model on application of chi-square test in education and social sciences. Educ Res Rev. 2013;8(15):1231–41.Google Scholar
  33. 33.
    Balding DJ. A tutorial on statistical methods for population association studies. Nat Rev Genet. 2006;7(10):781–91.CrossRefGoogle Scholar
  34. 34.
    Hosmer DW, Lemeshow S. Applied logistic regression, Wiley series in probability and statistics texts and references section. 2nd ed. New York: Wiley; 2000. p. 373. xii.CrossRefGoogle Scholar
  35. 35.
    Stratford PW. The added value of confidence intervals. Phys Ther. 2010;90(3):333–5.CrossRefGoogle Scholar
  36. 36.
    McCluskey A, Lalkhen AG. Statistics II: central tendency and spread of data. Contin Educ Anaesth Crit Care Pain. 2007;7(4):127–30.CrossRefGoogle Scholar
  37. 37.
    Salmond S. Taking the mystery out of research: box and whisker plots: displaying mean, interquartile range, and range. Orthop Nurs. 2007;26(1):33.CrossRefGoogle Scholar
  38. 38.
    Wan X, et al. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14(1):135.CrossRefGoogle Scholar
  39. 39.
    Lyon A. Why are normal distributions normal? Br J Philos Sci. 2014;65(3):621–49.CrossRefGoogle Scholar
  40. 40.
    Barde MP, Barde PJ. What to use to express the variability of data: standard deviation or standard error of mean? Perspect Clin Res. 2012;3(3):113–6.CrossRefGoogle Scholar
  41. 41.
    Curran-Everett D. Explorations in statistics: standard deviations and standard errors. Adv Physiol Educ. 2008;32(3):203–8.CrossRefGoogle Scholar
  42. 42.
    Sculco AD. Spine stats. The Kruskal-Wallis and Wilcoxon-Mann Whitney tests. Spine J. 2001;1(2):153.CrossRefGoogle Scholar
  43. 43.
    Hollander M, Wolfe DA. Nonparametric statistical methods, Wiley series in probability and statistics texts and references section. 2nd ed. New York: Wiley; 1999. p. 787. xiv.Google Scholar
  44. 44.
    Lazic SE. Why we should use simpler models if the data allow this: relevance for ANOVA designs in experimental biology. BMC Physiol. 2008;8(1):16.CrossRefGoogle Scholar
  45. 45.
    Tabachnick BG, Fidell LS. Experimental designs using ANOVA. Belmont: Thomson/Brooks/Cole; 2007. p. 724. xxi.Google Scholar
  46. 46.
    Bewick V, Cheek L, Ball J. Statistics review 7: correlation and regression. Crit Care. 2003;7(6):451–9.CrossRefGoogle Scholar
  47. 47.
    Curran-Everett D. Explorations in statistics: regression. Adv Physiol Educ. 2011;35(4):347–52.CrossRefGoogle Scholar
  48. 48.
    Tabachnick BG, Fidell LS. Using multivariate statistics. 5th ed. Boston: Pearson/Allyn & Bacon; 2007. p. 980. xxviii.Google Scholar
  49. 49.
    Curran-Everett D. Explorations in statistics: confidence intervals. Adv Physiol Educ. 2009;33(2):87–90.CrossRefGoogle Scholar
  50. 50.
    Wikipedia. 68–95–99.7 rule. 2015 [May 3, 2015]; Available from: http://en.wikipedia.org/wiki/68%E2%80%9395%E2%80%9399.7_rule.
  51. 51.
    Parikh R, et al. Understanding and using sensitivity, specificity and predictive values. Indian J Ophthalmol. 2008;56(1):45–50.CrossRefGoogle Scholar
  52. 52.
    Bruno P. The importance of diagnostic test parameters in the interpretation of clinical test findings: the prone hip extension test as an example. J Can Chiropr Assoc. 2011;55(2):69–75.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Fawcett T. An introduction to ROC analysis. Pattern Recog Lett. 2006;27(8):861–74.CrossRefGoogle Scholar
  54. 54.
    Pett MA. Nonparametric statistics for health care research: statistics for small samples and unusual distributions. Thousand Oaks: Sage Publications; 1997. p. 307.Google Scholar
  55. 55.
    Viera AJ, Garrett JM. Understanding interobserver agreement: the kappa statistic. Fam Med. 2005;37(5):360–3.PubMedGoogle Scholar
  56. 56.
    Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159–74.CrossRefGoogle Scholar
  57. 57.
    Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;86(2):420–8.CrossRefGoogle Scholar
  58. 58.
    Bewick V, Cheek L, Ball J. Statistics review 12: survival analysis. Crit Care. 2004;8(5):389–94.CrossRefGoogle Scholar
  59. 59.
    UCLA. Supplemental notes to applied survival analysis: applied survival analysis. 2015 [May 3, 2015]; Available from: http://www.ats.ucla.edu/stat/examples/asa/test_proportionality.htm.
  60. 60.
    Lee ET. Statistical methods for survival data analysis, Wiley series in probability and mathematical statistics applied probability and statistics. 2nd ed. New York: Wiley; 1992. p. 482. xii.Google Scholar
  61. 61.
    Conley EC, et al. Simultaneous trend analysis for evaluating outcomes in patient-centred health monitoring services. Health Care Manag Sci. 2008;11(2):152–66.CrossRefGoogle Scholar
  62. 62.
    Stawicki SP. Financial analysis techniques in clinical practice: from ‘micro’ to ‘macro’. OPUS 12 Sci. 2008;2(3):3–9.Google Scholar
  63. 63.
    Stawicki SP, et al. The glucogram: a new quantitative tool for glycemic analysis in the surgical intensive care unit. Int J Crit Illn Inj Sci. 2011;1(1):5–12.CrossRefGoogle Scholar
  64. 64.
    Stawicki SP. Application of financial analysis techniques to clinical laboratory data: a novel method of trend interpretation in the intensive care unit. OPUS 12 Sci. 2007;1(2):1–4.Google Scholar
  65. 65.
    Stawicki SP. Application of financial analysis techniques to vital sign data: a novel method of trend interpretation in the intensive care unit. OPUS 12 Sci. 2007;1(1):14–6.Google Scholar
  66. 66.
    Pappada SM, et al. Evaluation of a model for glycemic prediction in critically ill surgical patients. PLoS One. 2013;8(7):e69475.CrossRefGoogle Scholar
  67. 67.
    Rosenberg, D. U. S. Department of health & human services, division of science, education and analysis: trend analysis and interpretation. 1997; Available from: http://mchb.hrsa.gov/publications/pdfs/trendanaylsis.pdf.

Copyright information

© Springer International Publishing Switzerland 2016

Open Access This chapter is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Heidi H. Hon
    • 1
  • Jill C. Stoltzfus
    • 2
  • Stanislaw P. Stawicki
    • 3
  1. 1.Department of Surgery, St. Luke’sUniversity HospitalBethlehemUSA
  2. 2.Temple University School of Medicine, The Research InstituteSt. Luke’s University Health NetworkBethlehemUSA
  3. 3.Department of Research and InnovationSt. Luke’s University Health NetworkBethlehemUSA

Personalised recommendations