Anemia in the Surgical ICU

  • Aryeh Shander
  • Lena M. Napolitano
  • Margit Kaufman
Chapter

Abstract

Anemia is common in critically ill and it is associated with worsening of outcomes and increased risk of transfusion. Various compensatory mechanisms are activated to mitigate the negative effects of reduced oxygen-carrying capacity of blood in anemia, but these adaptations have limits and as the limits are reached, tissue oxygen delivery will no longer be adequate to meet the demand and ischemia and tissue injury may occur. Anemia is often multifactorial and in critically ill patients, it can be caused by blood loss, impaired erythropoiesis, and reduced life span of red blood cells, iron deficiency (absolute or functional), and hemodilution. Various management strategies are available to address these etiologies. Given the risks of transfusion, allogeneic blood should be used judiciously and only when clearly indicated and alongside other management and preventive strategies to reduce unnecessary and avoidable transfusions.

Keywords

Anemia Hemoglobin Ischemia Transfusion Iron Erythropoietin 

References

  1. 1.
    Napolitano LM. Scope of the problem: epidemiology of anemia and use of blood transfusions in critical care. Crit Care. 2004;8 Suppl 2:S1–8.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Shander A, Goodnough LT, Javidroozi M, Auerbach M, Carson J, Ershler WB, et al. Iron deficiency anemia – bridging the knowledge and practice gap. Transfus Med Rev. 2014;28(3):156–66.PubMedGoogle Scholar
  3. 3.
    Blanc B, Finch CA, Hallberg L. Nutritional aneamias. Report of a WHO Scientific Group. WHO Tech Rep Ser. 1968;405:1–40.Google Scholar
  4. 4.
    The global prevalence of anaemia in 2011. Geneva: World Health Organization; 2015.Google Scholar
  5. 5.
    Skjelbakken T, Langbakk B, Dahl IM, Lochen ML. Haemoglobin and anaemia in a gender perspective: the Tromso study. Eur J Haematol. 2005;74(5):381–8.PubMedGoogle Scholar
  6. 6.
    Beutler E, Waalen J. The definition of anemia: what is the lower limit of normal of the blood hemoglobin concentration? Blood. 2006;107(5):1747–50.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Guralnik JM, et al. Anemia in the elderly: a public health crisis in hematology. ASH Education Program Book. 2005;1(2005):528–32.Google Scholar
  8. 8.
    Corwin HL, Gettinger A, Pearl RG, Fink MP, Levy MM, Abraham E, et al. The CRIT study: anemia and blood transfusion in the critically ill – current clinical practice in the United States. Crit Care Med. 2004;32(1):39–52.Google Scholar
  9. 9.
    Corwin HL. Anemia and red blood cell transfusion in the critically ill. Semin Dial. 2006;19(6):513–6.PubMedGoogle Scholar
  10. 10.
    Nguyen BV, Bota DP, Melot C, Vincent JL. Time course of hemoglobin concentrations in nonbleeding intensive care unit patients. Crit Care Med. 2003;31(2):406–10.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Shander A. Anemia in the critically ill. Crit Care Clin. 2004;20(2):159–78.PubMedGoogle Scholar
  12. 12.
    Thomas J, Jensen L, Nahirniak S, Gibney RT. Anemia and blood transfusion practices in the critically ill: a prospective cohort review. Heart Lung. 2010;39(3):217–25.Google Scholar
  13. 13.
    Vincent JL, Baron JF, Reinhart K, Gattinoni L, Thijs L, Webb A, et al. Anemia and blood transfusion in critically ill patients. JAMA. 2002;288(12):1499–507.Google Scholar
  14. 14.
    Walsh TS, Lee RJ, Maciver CR, Garrioch M, Mackirdy F, Binning AR, et al. Anemia during and at discharge from intensive care: the impact of restrictive blood transfusion practice. Intensive Care Med. 2006;32(1):100–9.PubMedGoogle Scholar
  15. 15.
    Walsh TS, Garrioch M, Maciver C, Lee RJ, Mackirdy F, McClelland DB, et al. Red cell requirements for intensive care units adhering to evidence-based transfusion guidelines. Transfusion. 2004;44(10):1405–11.PubMedGoogle Scholar
  16. 16.
    Chant C, Wilson G, Friedrich JO. Anemia, transfusion, and phlebotomy practices in critically ill patients with prolonged ICU length of stay: a cohort study. Crit Care. 2006;10(5):R140.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Shapiro MJ, Gettinger A, Corwin HL, Napolitano L, Levy M, Abraham E, et al. Anemia and blood transfusion in trauma patients admitted to the intensive care unit. J Trauma. 2003;55(2):269–73.PubMedGoogle Scholar
  18. 18.
    Hebert PC, Wells G, Blajchman MA, Marshall J, Martin C, Pagliarello G, et al. A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion requirements in Critical Care Investigators, Canadian Critical Care Trials Group. N Engl J Med. 1999;340(6):409–17.Google Scholar
  19. 19.
    Palmieri TL, Caruso DM, Foster KN, Cairns BA, Peck MD, Gamelli RL, et al. Effect of blood transfusion on outcome after major burn injury: a multicenter study. Crit Care Med. 2006;34(6):1602–7.PubMedGoogle Scholar
  20. 20.
    Rao MP, Boralessa H, Morgan C, Soni N, Goldhill DR, Brett SJ, et al. Blood component use in critically ill patients. Anaesthesia. 2002;57(6):530–4.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Vincent JL, Sakr Y, Sprung C, Harboe S, Damas P. Are blood transfusions associated with greater mortality rates? Results of the sepsis occurrence in acutely ill patients study. Anesthesiology. 2008;108(1):31–9.PubMedGoogle Scholar
  22. 22.
    Walsh TS, McClelland DB, Lee RJ, Garrioch M, Maciver CR, McArdle F, et al. Prevalence of ischaemic heart disease at admission to intensive care and its influence on red cell transfusion thresholds: multicentre Scottish study. Br J Anaesth. 2005;94(4):445–52.PubMedGoogle Scholar
  23. 23.
    Zilberberg MD, Stern LS, Wiederkehr DP, Doyle JJ, Shorr AF. Anemia, transfusions and hospital outcomes among critically ill patients on prolonged acute mechanical ventilation: a retrospective cohort study. Crit Care. 2008;12(2):R60.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Dasta J, Mody SH, McLaughlin T, Leblanc J, Shen Y, Genetti M, et al. Current management of anemia in critically ill patients: analysis of a database of 139 hospitals. Am J Ther. 2008;15(5):423–30.PubMedGoogle Scholar
  25. 25.
    Marik PE, Corwin HL. Efficacy of red blood cell transfusion in the critically ill: a systematic review of the literature. Crit Care Med. 2008;36(9):2667–74.PubMedGoogle Scholar
  26. 26.
    Baskurt OK, Yalcin O, Meiselman HJ. Hemorheology and vascular control mechanisms. Clin Hemorheol Microcirc. 2004;30(3–4):169–78.PubMedGoogle Scholar
  27. 27.
    Shander A, Javidroozi M, Ozawa S, Hare GM. What is really dangerous: anaemia or transfusion? Br J Anaesth. 2011;107 Suppl 1:i41–59.PubMedGoogle Scholar
  28. 28.
    Otto JM, Montgomery HE, Richards T. Haemoglobin concentration and mass as determinants of exercise performance and of surgical outcome. Extrem Physiol Med. 2013;2(1):33.PubMedPubMedCentralGoogle Scholar
  29. 29.
    McLellan SA, Walsh TS. Oxygen delivery and haemoglobin. Educ Anaesth Crit Care Pain. 2004;4(4):123–6.Google Scholar
  30. 30.
    Madjdpour C, Spahn DR, Weiskopf RB. Anemia and perioperative red blood cell transfusion: a matter of tolerance. Crit Care Med. 2006;34(5 Suppl):S102–8.PubMedGoogle Scholar
  31. 31.
    Lane P, Gross S. Hemoglobin as a chariot for NO bioactivity. Nat Med. 2002;8(7):657–8.PubMedGoogle Scholar
  32. 32.
    Hamilton C, Steinlechner B, Gruber E, Simon P, Wollenek G. The oxygen dissociation curve: quantifying the shift. Perfusion. 2004;19(3):141–4.PubMedGoogle Scholar
  33. 33.
    Wilson DF, Lee WM, Makonnen S, Finikova O, Apreleva S, Vinogradov SA. Oxygen pressures in the interstitial space and their relationship to those in the blood plasma in resting skeletal muscle. J Appl Physiol. 2006;101(6):1648–56.PubMedGoogle Scholar
  34. 34.
    Lecoq J, Parpaleix A, Roussakis E, Ducros M, Houssen YG, Vinogradov SA, et al. Simultaneous two-photon imaging of oxygen and blood flow in deep cerebral vessels. Nat Med. 2011;17(7):893–8.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Sakadzic S, Roussakis E, Yaseen MA, Mandeville ET, Srinivasan VJ, Arai K, et al. Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue. Nat Methods. 2010;7(9):755–9.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Sharan M, Vovenko EP, Vadapalli A, Popel AS, Pittman RN. Experimental and theoretical studies of oxygen gradients in rat pial microvessels. J Cereb Blood Flow Metab. 2008;28(9):1597–604.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Baieth HE. Physical parameters of blood as a non-Newtonian fluid. Int J Biomed Sci. 2008;4(4):323–9.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Lucker A, Weber B, Jenny P. A dynamic model of oxygen transport from capillaries to tissue with moving red blood cells. Am J Physiol Heart Circ Physiol. 2015;308(3):H206–16.PubMedGoogle Scholar
  39. 39.
    Taylor CT. Mitochondria and cellular oxygen sensing in the HIF pathway. Biochem J. 2008;409(1):19–26.PubMedGoogle Scholar
  40. 40.
    Spinelli E, Bartlett RH. Anemia and transfusion in critical care: physiology and management. J Intensive Care Med. 2015.Google Scholar
  41. 41.
    Hayden SJ, Albert TJ, Watkins TR, Swenson ER. Anemia in critical illness: insights into etiology, consequences, and management. Am J Respir Crit Care Med. 2012;185(10):1049–57.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Stamati K, Mudera V, Cheema U. Evolution of oxygen utilization in multicellular organisms and implications for cell signalling in tissue engineering. J Tissue Eng. 2011;2(1):2041731411432365.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Kurata M, Suzuki M, Agar NS. Antioxidant systems and erythrocyte life-span in mammals. Comp Biochem Physiol B. 1993;106(3):477–87.PubMedGoogle Scholar
  44. 44.
    Mohanty JG, Nagababu E, Rifkind JM. Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging. Front Physiol. 2014;5:84.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Malka R, Delgado FF, Manalis SR, Higgins JM. In vivo volume and hemoglobin dynamics of human red blood cells. PLoS Comput Biol. 2014;10(10):e1003839.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Piomelli S, Seaman C. Mechanism of red blood cell aging: relationship of cell density and cell age. Am J Hematol. 1993;42(1):46–52.PubMedGoogle Scholar
  47. 47.
    Sugawara Y, Hayashi Y, Shigemasa Y, Abe Y, Ohgushi I, Ueno E, et al. Molecular biosensing mechanisms in the spleen for the removal of aged and damaged red cells from the blood circulation. Sensors (Basel). 2010;10(8):7099–121.Google Scholar
  48. 48.
    Lang F, Lang E, Foller M. Physiology and pathophysiology of eryptosis. Transfus Med Hemother. 2012;39(5):308–14.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Fadeel B, Xue D, Kagan V. Programmed cell clearance: molecular regulation of the elimination of apoptotic cell corpses and its role in the resolution of inflammation. Biochem Biophys Res Commun. 2010;396(1):7–10.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Rice L, Alfrey CP. The negative regulation of red cell mass by neocytolysis: physiologic and pathophysiologic manifestations. Cell Physiol Biochem. 2005;15(6):245–50.PubMedGoogle Scholar
  51. 51.
    Koulnis M, Porpiglia E, Hidalgo D, Socolovsky M. Erythropoiesis: from molecular pathways to system properties. Adv Exp Med Biol. 2014;844:37–58.PubMedGoogle Scholar
  52. 52.
    Ogunshola OO, Bogdanova AY. Epo and non-hematopoietic cells: what do we know? Methods Mol Biol. 2013;982:13–41.PubMedGoogle Scholar
  53. 53.
    Chapler CK, Cain SM. The physiologic reserve in oxygen carrying capacity: studies in experimental hemodilution. Can J Physiol Pharmacol. 1986;64(1):7–12.PubMedGoogle Scholar
  54. 54.
    Greer SN, Metcalf JL, Wang Y, Ohh M. The updated biology of hypoxia-inducible factor. EMBO J. 2012;31(11):2448–60.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Halperin ML, Cheema-Dhadli S, Lin SH, Kamel KS. Properties permitting the renal cortex to be the oxygen sensor for the release of erythropoietin: clinical implications. Clin J Am Soc Nephrol. 2006;1(5):1049–53.PubMedGoogle Scholar
  56. 56.
    Milsom WK, Burleson ML. Peripheral arterial chemoreceptors and the evolution of the carotid body. Respir Physiol Neurobiol. 2007;157(1):4–11.PubMedGoogle Scholar
  57. 57.
    Evans RG, Ince C, Joles JA, Smith DW, May CN, O’Connor PM, et al. Haemodynamic influences on kidney oxygenation: clinical implications of integrative physiology. Clin Exp Pharmacol Physiol. 2013;40(2):106–22.PubMedGoogle Scholar
  58. 58.
    Johannes T, Mik EG, Nohe B, Unertl KE, Ince C. Acute decrease in renal microvascular PO2 during acute normovolemic hemodilution. Am J Physiol Renal Physiol. 2007;292(2):F796–803.PubMedGoogle Scholar
  59. 59.
    Deem S, Hedges RG, McKinney S, Polissar NL, Alberts MK, Swenson ER. Mechanisms of improvement in pulmonary gas exchange during isovolemic hemodilution. J Appl Physiol (1985). 1999;87(1):132–41.Google Scholar
  60. 60.
    Metivier F, Marchais SJ, Guerin AP, Pannier B, London GM. Pathophysiology of anaemia: focus on the heart and blood vessels. Nephrol Dial Transplant. 2000;15 Suppl 3:14–8.PubMedGoogle Scholar
  61. 61.
    Cabrales P, Martini J, Intaglietta M, Tsai AG. Blood viscosity maintains microvascular conditions during normovolemic anemia independent of blood oxygen-carrying capacity. Am J Physiol Heart Circ Physiol. 2006;291(2):H581–90.PubMedGoogle Scholar
  62. 62.
    Li M, Bertout JA, Ratcliffe SJ, Eckenhoff MF, Simon MC, Floyd TF. Acute anemia elicits cognitive dysfunction and evidence of cerebral cellular hypoxia in older rats with systemic hypertension. Anesthesiology. 2010;113(4):845–58.PubMedPubMedCentralGoogle Scholar
  63. 63.
    McLaren AT, Mazer CD, Zhang H, Liu E, Mok L, Hare GM. A potential role for inducible nitric oxide synthase in the cerebral response to acute hemodilution. Can J Anaesth. 2009;56(7):502–9.PubMedGoogle Scholar
  64. 64.
    El Hasnaoui-Saadani R, Pichon A, Marchant D, Olivier P, Launay T, Quidu P, et al. Cerebral adaptations to chronic anemia in a model of erythropoietin-deficient mice exposed to hypoxia. Am J Physiol Regul Integr Comp Physiol. 2009;296(3):R801–11.PubMedGoogle Scholar
  65. 65.
    Wolff CB. Normal cardiac output, oxygen delivery and oxygen extraction. Adv Exp Med Biol. 2007;599:169–82.PubMedGoogle Scholar
  66. 66.
    Weiskopf RB, Viele MK, Feiner J, Kelley S, Lieberman J, Noorani M, et al. Human cardiovascular and metabolic response to acute, severe isovolemic anemia. JAMA. 1998;279(3):217–21.PubMedPubMedCentralGoogle Scholar
  67. 67.
    van Bommel J, Trouwborst A, Schwarte L, Siegemund M, Ince C, Henny C. Intestinal and cerebral oxygenation during severe isovolemic hemodilution and subsequent hyperoxic ventilation in a pig model. Anesthesiology. 2002;97(3):660–70.PubMedGoogle Scholar
  68. 68.
    Kaelin Jr WG, Ratcliffe PJ. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell. 2008;30(4):393–402.PubMedGoogle Scholar
  69. 69.
    Semenza GL. Hypoxia-inducible factor 1 (HIF-1) pathway. Sci STKE. 2007;2007(407):cm8.PubMedGoogle Scholar
  70. 70.
    Semenza GL. O2-regulated gene expression: transcriptional control of cardiorespiratory physiology by HIF-1. J Appl Physiol (1985). 2004;96(3):1173–7.Google Scholar
  71. 71.
    Gruber M, Hu CJ, Johnson RS, Brown EJ, Keith B, Simon MC. Acute postnatal ablation of Hif-2alpha results in anemia. Proc Natl Acad Sci U S A. 2007;104(7):2301–6.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Kim JW, Tchernyshyov I, Semenza GL, Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006;3(3):177–85.PubMedGoogle Scholar
  73. 73.
    Matsuoka T, Saiki C, Mortola JP. Metabolic and ventilatory responses to anemic hypoxia in conscious rats. J Appl Physiol (1985). 1994;77(3):1067–72.Google Scholar
  74. 74.
    Corwin HL, Krantz SB. Anemia of the critically ill: “acute” anemia of chronic disease. Crit Care Med. 2000;28(8):3098–9.PubMedGoogle Scholar
  75. 75.
    Zarychanski R, Houston DS. Anemia of chronic disease: a harmful disorder or an adaptive, beneficial response? CMAJ. 2008;179(4):333–7.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Sihler KC, Napolitano LM. Anemia of inflammation in critically ill patients. J Intensive Care Med. 2008;23(5):295–302.PubMedGoogle Scholar
  77. 77.
    von Ahsen N, Muller C, Serke S, Frei U, Eckardt KU. Important role of nondiagnostic blood loss and blunted erythropoietic response in the anemia of medical intensive care patients. Crit Care Med. 1999;27(12):2630–9.Google Scholar
  78. 78.
    MacIsaac CM, Presneill JJ, Boyce CA, Byron KL, Cade JF. The influence of a blood conserving device on anaemia in intensive care patients. Anaesth Intensive Care. 2003;31(6):653–7.PubMedGoogle Scholar
  79. 79.
    Mukhopadhyay A, Yip HS, Prabhuswamy D, Chan YH, Phua J, Lim TK, et al. The use of a blood conservation device to reduce red blood cell transfusion requirements: a before and after study. Crit Care. 2010;14(1):R7.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Page C, Retter A, Wyncoll D. Blood conservation devices in critical care: a narrative review. Ann Intensive Care. 2013;3:14.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Peruzzi WT, Parker MA, Lichtenthal PR, Cochran-Zull C, Toth B, Blake M. A clinical evaluation of a blood conservation device in medical intensive care unit patients. Crit Care Med. 1993;21(4):501–6.PubMedGoogle Scholar
  82. 82.
    Smoller BR, Kruskall MS, Horowitz GL. Reducing adult phlebotomy blood loss with the use of pediatric-sized blood collection tubes. Am J Clin Pathol. 1989;91(6):701–3.PubMedGoogle Scholar
  83. 83.
    Dolman HS, Evans K, Zimmerman LH, Lavery T, Baylor AE, Wilson RF, et al. Impact of minimizing diagnostic blood loss in the critically ill. Surgery. 2015;158(4):1083–7.PubMedGoogle Scholar
  84. 84.
    Krafte-Jacobs B, Levetown ML, Bray GL, Ruttimann UE, Pollack MM. Erythropoietin response to critical illness. Crit Care Med. 1994;22(5):821–6.PubMedGoogle Scholar
  85. 85.
    Krafte-Jacobs B. Anemia of critical illness and erythropoietin deficiency. Intensive Care Med. 1997;23(2):137–8.PubMedGoogle Scholar
  86. 86.
    Rodriguez RM, Corwin HL, Gettinger A, Corwin MJ, Gubler D, Pearl RG. Nutritional deficiencies and blunted erythropoietin response as causes of the anemia of critical illness. J Crit Care. 2001;16(1):36–41.PubMedGoogle Scholar
  87. 87.
    Rogiers P, Zhang H, Leeman M, Nagler J, Neels H, Melot C, et al. Erythropoietin response is blunted in critically ill patients. Intensive Care Med. 1997;23(2):159–62.PubMedGoogle Scholar
  88. 88.
    van Iperen CE, Gaillard CA, Kraaijenhagen RJ, Braam BG, Marx JJ, van de Wiel A. Response of erythropoiesis and iron metabolism to recombinant human erythropoietin in intensive care unit patients. Crit Care Med. 2000;28(8):2773–8.PubMedGoogle Scholar
  89. 89.
    DeAngelo AJ, Bell DG, Quinn MW, Long DE, Ouellette DR. Erythropoietin response in critically ill mechanically ventilated patients: a prospective observational study. Crit Care. 2005;9(3):R172–6.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Hobisch-Hagen P, Wiedermann F, Mayr A, Fries D, Jelkmann W, Fuchs D, et al. Blunted erythropoietic response to anemia in multiply traumatized patients. Crit Care Med. 2001;29(4):743–7.PubMedGoogle Scholar
  91. 91.
    Fonseca RB, Mohr AM, Wang L, Sifri ZC, Rameshwar P, Livingston DH. The impact of a hypercatecholamine state on erythropoiesis following severe injury and the role of IL-6. J Trauma. 2005;59(4):884–9.PubMedGoogle Scholar
  92. 92.
    Corwin HL, Gettinger A, Fabian TC, May A, Pearl RG, Heard S, et al. Efficacy and safety of epoetin alfa in critically ill patients. N Engl J Med. 2007;357(10):965–76.PubMedGoogle Scholar
  93. 93.
    Turaga KK, Sugimoto JT, Forse RA. A meta-analysis of randomized controlled trials in critically ill patients to evaluate the dose-response effect of erythropoietin. J Intensive Care Med. 2007;22(5):270–82.PubMedGoogle Scholar
  94. 94.
    Corwin HL, Gettinger A, Pearl RG, Fink MP, Levy MM, Shapiro MJ, et al. Efficacy of recombinant human erythropoietin in critically ill patients: a randomized controlled trial. JAMA. 2002;288(22):2827–35.PubMedGoogle Scholar
  95. 95.
    Napolitano LM, Fabian TC, Kelly KM, Bailey JA, Block EF, Langholff W, et al. Improved survival of critically ill trauma patients treated with recombinant human erythropoietin. J Trauma. 2008;65(2):285–97.PubMedGoogle Scholar
  96. 96.
    Piagnerelli M, Cotton F, Herpain A, Rapotec A, Chatti R, Gulbis B, et al. Time course of iron metabolism in critically ill patients. Acta Clin Belg. 2013;68(1):22–7.PubMedGoogle Scholar
  97. 97.
    Thomas DW, Hinchliffe RF, Briggs C, Macdougall IC, Littlewood T, Cavill I. Guideline for the laboratory diagnosis of functional iron deficiency. Br J Haematol. 2013;161(5):639–48.PubMedGoogle Scholar
  98. 98.
    Fleming RE, Bacon BR. Orchestration of iron homeostasis. N Engl J Med. 2005;352(17):1741–4.PubMedGoogle Scholar
  99. 99.
    Weiss G, Goodnough LT. Anemia of chronic disease. N Engl J Med. 2005;352(10):1011–23.PubMedGoogle Scholar
  100. 100.
    Gangat N, Wolanskyj AP. Anemia of chronic disease. Semin Hematol. 2013;50(3):232–8.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Ganz T. Hepcidin and iron regulation, 10 years later. Blood. 2011;117(17):4425–33.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Sihler KC, Raghavendran K, Westerman M, Ye W, Napolitano LM. Hepcidin in trauma: linking injury, inflammation, and anemia. J Trauma. 2010;69(4):831–7.PubMedGoogle Scholar
  103. 103.
    Sasaki Y, Noguchi-Sasaki M, Yasuno H, Yorozu K, Shimonaka Y. Erythropoietin stimulation decreases hepcidin expression through hematopoietic activity on bone marrow cells in mice. Int J Hematol. 2012;96(6):692–700.PubMedGoogle Scholar
  104. 104.
    De Domenico I, Zhang TY, Koening CL, Branch RW, London N, Lo E, et al. Hepcidin mediates transcriptional changes that modulate acute cytokine-induced inflammatory responses in mice. J Clin Invest. 2010;120(7):2395–405.PubMedPubMedCentralGoogle Scholar
  105. 105.
    Maliken BD, Nelson JE, Kowdley KV. The hepcidin circuits act: balancing iron and inflammation. Hepatology. 2011;53(5):1764–6.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Ganz T, Nemeth E. The hepcidin-ferroportin system as a therapeutic target in anemias and iron overload disorders. Hematol Am Soc Hematol Educ Prog. 2011;2011:538–42.Google Scholar
  107. 107.
    Sun CC, Vaja V, Babitt JL, Lin HY. Targeting the hepcidin-ferroportin axis to develop new treatment strategies for anemia of chronic disease and anemia of inflammation. Am J Hematol. 2012;87(4):392–400.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Ashby DR, Gale DP, Busbridge M, Murphy KG, Duncan ND, Cairns TD, et al. Erythropoietin administration in humans causes a marked and prolonged reduction in circulating hepcidin. Haematologica. 2010;95(3):505–8.PubMedGoogle Scholar
  109. 109.
    Elliott J, Mishler D, Agarwal R. Hyporesponsiveness to erythropoietin: causes and management. Adv Chronic Kidney Dis. 2009;16(2):94–100.PubMedGoogle Scholar
  110. 110.
    Fung E, Nemeth E. Manipulation of the hepcidin pathway for therapeutic purposes. Haematologica. 2013;98(11):1667–76.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Schwoebel F, van Eijk LT, Zboralski D, Sell S, Buchner K, Maasch C, et al. The effects of the anti-hepcidin Spiegelmer NOX-H94 on inflammation-induced anemia in cynomolgus monkeys. Blood. 2013;121(12):2311–5.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Kautz L, Jung G, Valore EV, Rivella S, Nemeth E, Ganz T. Identification of erythroferrone as an erythroid regulator of iron metabolism. Nat Genet. 2014;46(7):678–84.PubMedPubMedCentralGoogle Scholar
  113. 113.
    Corwin HL, Parsonnet KC, Gettinger A. RBC transfusion in the ICU. Is there a reason? Chest. 1995;108(3):767–71.PubMedPubMedCentralGoogle Scholar
  114. 114.
    McEvoy MT, Shander A. Anemia, bleeding, and blood transfusion in the intensive care unit: causes, risks, costs, and new strategies. Am J Crit Care. 2013;22(6 Suppl):eS1–13.PubMedGoogle Scholar
  115. 115.
    So-Osman C, Nelissen RG, Koopman-van Gemert AW, Kluyver E, Poll RG, Onstenk R, et al. Patient blood management in elective total hip- and knee-replacement surgery (part 2): a randomized controlled trial on blood salvage as transfusion alternative using a restrictive transfusion policy in patients with a preoperative hemoglobin above 13 g/dl. Anesthesiology. 2014;120(4):852–60.PubMedGoogle Scholar
  116. 116.
    Garratty G. Immune hemolytic anemia caused by drugs. Expert Opin Drug Saf. 2012;11(4):635–42.PubMedGoogle Scholar
  117. 117.
    Shander A, Javidroozi M, Ashton ME. Drug-induced anemia and other red cell disorders: a guide in the age of polypharmacy. Curr Clin Pharmacol. 2011;6(4):295–303.PubMedGoogle Scholar
  118. 118.
    Michel M. Classification and therapeutic approaches in autoimmune hemolytic anemia: an update. Expert Rev Hematol. 2011;4(6):607–18.PubMedGoogle Scholar
  119. 119.
    Arnold DM, Donahoe L, Clarke FJ, Tkaczyk AJ, Heels-Ansdell D, Zytaruk N, et al. Bleeding during critical illness: a prospective cohort study using a new measurement tool. Clin Invest Med. 2007;30(2):E93–102.PubMedGoogle Scholar
  120. 120.
    Drews RE. Critical issues in hematology: anemia, thrombocytopenia, coagulopathy, and blood product transfusions in critically ill patients. Clin Chest Med. 2003;24(4):607–22.PubMedGoogle Scholar
  121. 121.
    Greinacher A, Selleng K. Thrombocytopenia in the intensive care unit patient. Hematol Am Soc Hematol Educ Prog. 2010;2010:135–43.Google Scholar
  122. 122.
    Corwin HL, Gettinger A, Rodriguez RM, Pearl RG, Gubler KD, Enny C, et al. Efficacy of recombinant human erythropoietin in the critically ill patient: a randomized, double-blind, placebo-controlled trial. Crit Care Med. 1999;27(11):2346–50.PubMedGoogle Scholar
  123. 123.
    Napolitano LM. Epoetin alfa in the critically ill: what dose? Which route? Crit Care Med. 2009;37(4):1501–3.PubMedGoogle Scholar
  124. 124.
    Swoboda SM, Lipsett PA. Intravenous iron as a risk factor for bacteremia in the surgical intensive care unit patient. Surg Infect. 2005;6:158.Google Scholar
  125. 125.
    Torres S, Kuo YH, Morris K, Neibart R, Holtz JB, Davis JM. Intravenous iron following cardiac surgery does not increase the infection rate. Surg Infect (Larchmt). 2006;7(4):361–6.Google Scholar
  126. 126.
    Conrad SA, Dietrich KA, Hebert CA, Romero MD. Effect of red cell transfusion on oxygen consumption following fluid resuscitation in septic shock. Circ Shock. 1990;31(4):419–29.PubMedGoogle Scholar
  127. 127.
    Marik PE, Sibbald WJ. Effect of stored-blood transfusion on oxygen delivery in patients with sepsis. JAMA. 1993;269(23):3024–9.PubMedGoogle Scholar
  128. 128.
    Ronco JJ, Phang PT, Walley KR, Wiggs B, Fenwick JC, Russell JA. Oxygen consumption is independent of changes in oxygen delivery in severe adult respiratory distress syndrome. Am Rev Respir Dis. 1991;143(6):1267–73.PubMedGoogle Scholar
  129. 129.
    Shah DM, Gottlieb ME, Rahm RL, Stratton HH, Barie PS, Paloski WH, et al. Failure of red blood cell transfusion to increase oxygen transport or mixed venous PO2 in injured patients. J Trauma. 1982;22(9):741–6.PubMedGoogle Scholar
  130. 130.
    Napolitano LM, Kurek S, Luchette FA, Corwin HL, Barie PS, Tisherman SA, et al. Clinical practice guideline: red blood cell transfusion in adult trauma and critical care. Crit Care Med. 2009;37(12):3124–57.PubMedPubMedCentralGoogle Scholar
  131. 131.
    Shander A. Emerging risks and outcomes of blood transfusion in surgery. Semin Hematol. 2004;41(1 Suppl 1):117–24.PubMedGoogle Scholar
  132. 132.
    Moore SB. Transfusion-related acute lung injury (TRALI): clinical presentation, treatment, and prognosis. Crit Care Med. 2006;34(5 Suppl):S114–7.PubMedGoogle Scholar
  133. 133.
    Toy P, Gajic O, Bacchetti P, Looney MR, Gropper MA, Hubmayr R, et al. Transfusion-related acute lung injury: incidence and risk factors. Blood. 2012;119(7):1757–67.PubMedPubMedCentralGoogle Scholar
  134. 134.
    Shander A, Popovsky MA. Understanding the consequences of transfusion-related acute lung injury. Chest. 2005;128(5 Suppl 2):598S–604.PubMedGoogle Scholar
  135. 135.
    Vlaar AP, Hofstra JJ, Determann RM, Veelo DP, Paulus F, Kulik W, et al. The incidence, risk factors, and outcome of transfusion-related acute lung injury in a cohort of cardiac surgery patients: a prospective nested case-control study. Blood. 2011;117(16):4218–25.PubMedGoogle Scholar
  136. 136.
    Bolton-Maggs PH, Cohen H. Serious hazards of transfusion (SHOT) haemovigilance and progress is improving transfusion safety. Br J Haematol. 2013;163(3):303–14.PubMedPubMedCentralGoogle Scholar
  137. 137.
    Lucas G, Win N, Calvert A, Green A, Griffin E, Bendukidze N, et al. Reducing the incidence of TRALI in the UK: the results of screening for donor leucocyte antibodies and the development of national guidelines. Vox Sang. 2012;103(1):10–7.PubMedGoogle Scholar
  138. 138.
    Popovsky MA. Pulmonary consequences of transfusion: TRALI and TACO. Transfus Apher Sci. 2006;34(3):243–4.PubMedGoogle Scholar
  139. 139.
    Narick C, Triulzi DJ, Yazer MH. Transfusion-associated circulatory overload after plasma transfusion. Transfusion. 2012;52(1):160–5.PubMedPubMedCentralGoogle Scholar
  140. 140.
    Li G, Rachmale S, Kojicic M, Shahjehan K, Malinchoc M, Kor DJ, et al. Incidence and transfusion risk factors for transfusion-associated circulatory overload among medical intensive care unit patients. Transfusion. 2011;51(2):338–43.PubMedGoogle Scholar
  141. 141.
    Opelz G, Sengar DP, Mickey MR, Terasaki PI. Effect of blood transfusions on subsequent kidney transplants. Transplant Proc. 1973;5(1):253–9.PubMedGoogle Scholar
  142. 142.
    Vamvakas EC, Blajchman MA. Transfusion-related mortality: the ongoing risks of allogeneic blood transfusion and the available strategies for their prevention. Blood. 2009;113(15):3406–17.PubMedGoogle Scholar
  143. 143.
    Triulzi DJ, Yazer MH. Clinical studies of the effect of blood storage on patient outcomes. Transfus Apher Sci. 2010;43(1):95–106.PubMedGoogle Scholar
  144. 144.
    Refaai MA, Blumberg N. Transfusion immunomodulation from a clinical perspective: an update. Expert Rev Hematol. 2013;6(6):653–63.PubMedGoogle Scholar
  145. 145.
    Walsh TS, Saleh EE, Lee RJ, McClelland DB. The prevalence and characteristics of anaemia at discharge home after intensive care. Intensive Care Med. 2006;32(8):1206–13.PubMedGoogle Scholar
  146. 146.
    Bateman AP, McArdle F, Walsh TS. Time course of anemia during six months follow up following intensive care discharge and factors associated with impaired recovery of erythropoiesis. Crit Care Med. 2009;37(6):1906–12.PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Open Access This chapter is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Aryeh Shander
    • 1
  • Lena M. Napolitano
    • 2
  • Margit Kaufman
    • 1
  1. 1.Anesthesiology and Critical Care MedicineEnglewood Hospital and Medical CenterEnglewoodUSA
  2. 2.Department of SurgeryUniversity of Michigan Health SystemAnn ArborUSA

Personalised recommendations