Skip to main content

Part of the book series: Green Energy and Technology ((GREEN))

  • 624 Accesses

Abstract

This chapter proposes the formulation of stochastic models (logistic regression analysis and Markov chains model), which allow analysing the claddings’ service life based on probabilistic distribution functions. These models allow assessing: i) the probability of each façade with a given degradation condition according to its age, its characteristics, and the environmental exposure condition; ii) the period of time with maximum probability of transition from a degradation condition to the next one (more severe); iii) the probability of each case study reaching the end of its service life over a given period of time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agresti A (1986) Applying R2 type measures to ordered categorical data. Technometrics 28(2):133–138

    Google Scholar 

  • Agresti A (2002) Categorical data analysis, 2nd edn. Wiley, New York

    Book  MATH  Google Scholar 

  • Aikivuori AM (1999) Critical loss of performance—what fails before durability. In: 8th international conference on durability of buildings materials and components, DBMC, Vancouver, Canada, pp 1369–1376

    Google Scholar 

  • Akaike HA (1979) Bayesian extension of the minimum AIC procedure of autoregressive model fitting. Biometrika 66(2):237–242

    Article  MathSciNet  MATH  Google Scholar 

  • Akaike HA (1981) Likelihood of a model and information criteria. J Econometrics 16(1):3–14

    Article  MathSciNet  MATH  Google Scholar 

  • Akaike HA (1984) New look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723

    Article  MathSciNet  MATH  Google Scholar 

  • Ash A, Shwartz M (1999) R2: a useful measure of model performance when predicting a dichotomous outcome. Stat Med 18(4):375–384

    Article  Google Scholar 

  • Augenbroe GLM, Park C-S (2002) Towards a maintenance performance toolkit for GSA. Interim Report submitted to GSA, Georgia Institute of Technology, Atlanta, USA

    Google Scholar 

  • Baik HS, Jeong HS, Abraham DM (2006) Estimating transition probabilities in Markov chain-based deterioration models for management of wastewater systems. J Water Resour Plan Manage 132(1):15–24

    Article  Google Scholar 

  • Balaras A, Droutsa K, Dascalaki E, Kontoyiannidis S (2005) Deterioration of European apartment buildings. Energy Build 37(5):515–527

    Article  Google Scholar 

  • Baum LE, Petrie T (1966) Statistical inference for probabilistic functions of finite state Markov chains. Ann Math Stat 37(6):1554–1563

    Article  MathSciNet  MATH  Google Scholar 

  • Bayaga A (2010) Multinomial logistic regression: usage and application in risk analysis. J Appl Quant Methods 5(2):288–297

    Google Scholar 

  • Bladty M, Sorensen M (2009) Efficient estimation of transition rates between credit ratings from observations at discrete time points. Quant Finance 9(2):147–160

    Article  MathSciNet  Google Scholar 

  • Bocchini P, Saydam D, Frangopol DM (2013) Efficient, accurate, and simple Markov chain model for the life-cycle analysis of bridge groups. Struct Saf 40:51–64

    Article  Google Scholar 

  • Bogdanoff JL (1978) A new cumulative damage model- Part 1. J Appl Mech 45(2):246–250

    Article  Google Scholar 

  • Brandt E, Rasmussen M (2002) Assessment of building conditions. Energy Build 34(2):121–125

    Article  Google Scholar 

  • Cargal JM (2013) Discrete mathematics for neophytes: number theory, probability, algorithms, and other stuff. Accessed in 31 Jan 2013. Available online in http://www.cargalmathbooks.com/lectures.htm

  • Carrington PJ, Scott J, Wasserman S (eds) (2005) Models and methods in social network analysis, 1st edn. Cambridge University Press, New York

    Google Scholar 

  • Chew M (2005) Defect analysis in wet areas of buildings. Constr Build Mater 19(3):165–173

    Article  Google Scholar 

  • Choi EC (1999) Wind driven rain on building facades and the driving rain index. Wind Eng Ind Aeronaut 79(1–2):105–122

    Article  Google Scholar 

  • Choi M, Lee G (2010) Decision tree for selecting retaining wall systems based on logistic regression analysis. Autom Construct 19(7):917–928

    Article  MathSciNet  Google Scholar 

  • Cox DR, Miller HD (1965) The theory of stochastic processes, 1st edn. Chapman and Hall, London

    MATH  Google Scholar 

  • Cox DR, Snell EJ (1989) The analysis of binary data, 2nd edn. Chapman and Hall, London

    MATH  Google Scholar 

  • Cox DR, Wermuch N (1992) A comment on the coefficient of determination for binary responses. Am Stat 46(1):1–4

    Google Scholar 

  • Das PC (1998) New developments in bridge management methodology. Struct Eng Int 8(4):299–302

    Google Scholar 

  • Dekker R, Nicolai RP, Kallenberg LCM (2008) Maintenance and Markov decision models. Encyclopedia of statistics in quality and reliability. Wiley, London

    Google Scholar 

  • Ellingwood BR (2005) Risk-informed condition assessment of civil infrastructure: state of practice and research issues. Struct Infrastruct Eng Maintenance Manage Life-Cycle Des Perform 1(1):7–18

    Article  Google Scholar 

  • Frangopol DM, Neves LC (2004) Probabilistic maintenance and optimization strategies for deteriorating civil infrastructures. In: Topping BHV, Mota Soares CA (eds) Progress in computational structures technology. Saxe-Coburg Publishers, Stirling, pp 353–377

    Google Scholar 

  • Frangopol DM, Kallen M-J, Noortwijk JMV (2004) Probabilistic models for life-cycle performance of deteriorating structures: review and future directions. Prog Struct Mat Eng 6(4):197–212

    Article  Google Scholar 

  • Freitas VP, Sousa M, Abrantes V (1999) Survey of the durability of facades of 4000 dwellings in northern Portugal. In: 8th DBMC, international conference on the durability of building materials and components; Ottawa, Canada, pp 1040–1050

    Google Scholar 

  • Gao S, Shen J (2007) Asymptotic properties of a double penalized maximum likelihood estimator in logistic regression. Stat Probab Lett 77(9):925–930

    Article  MathSciNet  MATH  Google Scholar 

  • Garavaglia E, Gianni A, Molina C (2004) Reliability of porous materials: two stochastic approaches. J Mater Civ Eng 16(5):419–426

    Article  Google Scholar 

  • Gaspar P (2009) Service life of constructions: development of a method to estimate the durability of construction elements. Application to renderings of current buildings (in Portuguese). Doctor thesis in sciences of engineering, Instituto Superior Técnico, University of Lisbon, Portugal

    Google Scholar 

  • Gu MG, Kong FH (1998) A stochastic approximation algorithm with Markov chain Monte Carlo method for incomplete data estimation problems. Nat Acad Sci USA 95(13):7270–7274

    Article  MathSciNet  MATH  Google Scholar 

  • Hair JF, Black WC, Babin B, Anderson RE, Tatham RL (2007) Multivariate data analysis, 6th edn. Prentice-Hall Publishers, Englewood Cliffs

    Google Scholar 

  • Handel RV (2008) Hidden Markov models. Lecture Notes, Princeton University, New Jersey, USA

    Google Scholar 

  • Henry NW (1971) The retention model: a Markov chain with variable transition probabilities. J Am Stat Assoc 66(334):264–267

    Article  Google Scholar 

  • Higham D, Higham N (2005) MATLAB guide, 2nd edn. Society for Industrial Mathematics, Philadelphia

    Book  MATH  Google Scholar 

  • Horn R, Johnson C (1985) Matrix analysis. Cambridge University Press, Cambridge

    Google Scholar 

  • Hosmer DW, Lemeshow S (1980) Goodness of fit tests for the multiple logistic regression model. Commun Stat Part A Theory Methods 9(10):1043–1069

    Article  MATH  Google Scholar 

  • Hosmer DW, Lemeshow S (2000) Applied logistic regression, 2nd edn. Wiley, New York

    Book  MATH  Google Scholar 

  • Hosmer DW, Hjort NL (2002) Goodness-of-fit processes for logistic regression: simulation results. Stat Med 21(18):2723–2738

    Article  Google Scholar 

  • Hossain KMA, Lachemi M, Şahmaran M (2009) Performance of cementitious building renders incorporating natural and industrial pozzolans under aggressive airborne marine salts. Cement Concr Compos 31(6):358–368

    Article  Google Scholar 

  • Howell DC (2002) Statistical methods for psychology, 5th edn. Wadsworth Publishing, Pacific Grove

    Google Scholar 

  • Hu B, Shao J, Palta M (2006) Pseudo-R2 in logistic regression model. Statistica Sinica 16(3):847–860

    MathSciNet  MATH  Google Scholar 

  • Johnson JT (1987) Continuous-time, constant causative Markov chains. Stoch Process Appl 26:161–171

    Article  MathSciNet  MATH  Google Scholar 

  • Kalbfleisch JD, Lawless JF (1985) The analysis of panel data under a Markov assumption. J Am Stat Assoc 80(392):863–871

    Article  MathSciNet  MATH  Google Scholar 

  • Kallen MJ (2009) A comparison of statistical models for visual inspection data. Safety, reliability and risk structures, infrastructures and engineering systems. In: Tenth international conference on structural safety and reliability (ICOSSAR), Osaka, Japan, pp 3235–3242

    Google Scholar 

  • Kobayashi K, Do M, Han D (2010) Estimation of Markovian transition probabilities for pavement deterioration forecasting. KSCE J Civil Eng 14(3):343–351

    Article  Google Scholar 

  • Koch A, Siegesmund S (2004) The combined effect of moisture and temperature on the anomalous expansion behaviour of marble. Environ Geol 46(3–4):350–363

    Google Scholar 

  • Kus H, Nygren K (2000) Long-term exposure of rendered autoclaved aerated concrete: measuring and testing programme. In: RILEM/CIB/ISO international symposium—integrated life-cycle design of materials and structures, Helsinki, Finland, pp 415–420

    Google Scholar 

  • Kus H, Nygren K (2002) Microenvironmental characterization of rendered autoclaved aerated concrete. Build Res Inf 30(1):25–34

    Article  Google Scholar 

  • Kus H, Nygren K, Norberg P (2004) In-use performance assessment of rendered autoclaved concrete walls by long-term moisture monitoring. Build Environ 39(6):677–687

    Article  Google Scholar 

  • Kuss O (2002) Global goodness-of-fit tests in logistic regression with sparse data. Stat Med 21(24):3789–3801

    Article  Google Scholar 

  • Lacasse MA, Kyle BR, Talon A, Boissier D, Hilly T, Abdulghani K (2008) Optimization of the building maintenance management process using a markovian model. In: 11th international conference on the durability of building materials and components, Istanbul, Turkey, pp 1–9 (T72)

    Google Scholar 

  • Lee S, Hershberger S (1990) A simple rule for generating equivalent models in covariance structure modeling. Multivar Behav Res 25(3):313–334

    Article  Google Scholar 

  • Lethanh N, Adey B (2012) A hidden Markov model for modeling pavement deterioration under incomplete monitoring data. In: International conference on mathematical, computational and statistical sciences, and engineering 2012, Stockholm, Sweden, pp 722–729

    Google Scholar 

  • Lewis KN, Heckman BD, Himawan L (2011) Multinomial logistic regression analysis for differentiating 3 treatment outcome trajectory groups for headache-associated disability. Pain 152(8):1718–1726

    Article  Google Scholar 

  • Li P (2007) Hypothesis testing in finite mixture models. Doctoral thesis in Statistics, University of Waterloo, Ontario, Canada

    Google Scholar 

  • Li Z, Wang W (2006) Computer aided solving the high-order transition probability matrix of the finite Markov chain. Appl Math Comput 172(1):267–285

    MathSciNet  MATH  Google Scholar 

  • Liu T (2010) Application of Markov chains to analyze and predict the time series. Mod Appl Sci 4(5):162–166

    Article  MATH  Google Scholar 

  • Ljung L (1987) System identification—theory for the user. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Lounis Z, Vanier DJ (2000) A multi-objective and stochastic system for building maintenance management. Comput Aided Civil Infrastruct Eng 15(5):320–329

    Article  Google Scholar 

  • Lounis Z, Lacasse MA, Siemes AJM, Moser K (1998) Further steps towards a quantitative approach to durability design. Materials and technologies for sustainable construction, construction & environment. CIB World Building Congress, Gävle, Sweden, pp 315–324

    Google Scholar 

  • Madanat S, Mishalani R, Ibrahim WHW (1995) Estimation of infrastructure transition probabilities from condition rating data. J Infrastruct Syst 1(2):120–125

    Article  Google Scholar 

  • Maroco J (2007) Statistical analysis using SPSS. (in Portuguese), 3rd edn. Sílabo Editions, Lisbon

    Google Scholar 

  • Marteinsson B, Jónsson B (1999) Overall survey of buildings—performance and maintenance. In: 8th DBMC, international conference on the durability of building materials and components, Ottawa, Canada, pp 1634–1654

    Google Scholar 

  • Mc Duling JJ (2006) Towards the development of transition probability matrices in the Markovian model for the predicted service life of buildings. PhD thesis in civil engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Pretoria

    Google Scholar 

  • McFadden D (1973) Conditional logit analysis of qualitative choice behavior. In: Zarembka P (ed) Frontiers of econometrics. Academic Press, New York, pp 105–142

    Google Scholar 

  • Menard S (2000) Coefficients of determination for multiple logistic regression analysis. Am Stat 54(1):17–24

    Google Scholar 

  • Mitchell DS (2007) The use of lime & cement in traditional buildings. Technical Conservation, Research and Education Group, Historic Scotland, Longmore House, Salisbury Place, Edinburgh, Scotland, 8p

    Google Scholar 

  • Mittlbock M, Schemper M (1996) Explained variation for logistic regression. Stat Med 15(19):1987–1997

    Article  Google Scholar 

  • Monika SO (2005) Statistical inference and hypothesis testing for Markov chains with interval censoring—application to bridge condition data in the Netherlands. Master thesis in civil engineering, Delft University of Technology, Delft

    Google Scholar 

  • Morcous G (2006) Performance prediction of bridge deck systems using Markov chains. J Perform Construct Facil 20(2):146–155

    Article  Google Scholar 

  • Morcous G, Lounis Z, Mirza MS (2003) Identification of environmental categories for Markovian deterioration models of bridge decks. J Bridge Eng 8(6):353–361

    Article  Google Scholar 

  • Moser K (2003) Engineering design methods for service life planning—state of the art. In: WMDBP 2003, international workshop on management of durability in the building process, Politecnico di Milano, Milan, Italy, paper 40

    Google Scholar 

  • Myung IJ (2003) Tutorial on maximum likelihood estimation. J Math Psychol 47(1):90–100

    Article  MathSciNet  MATH  Google Scholar 

  • Nagelkerke NJD (1991) A note on a general definition of the coefficient of determination. Biometrika 78(3):691–693

    Article  MathSciNet  MATH  Google Scholar 

  • Neves LC, Frangopol DM, Cruz PJS (2006) Lifetime multi-objective optimization of maintenance of existing steel structures. In: 6th international symposium steel bridges, European Convention for Construction Steelwork, Prague, Czech Republic, pp 206–215

    Google Scholar 

  • Newsom JT (2011) Logistic regression. Course of Data analysis II, Institute on Aging, School of Community Health, Portland State University

    Google Scholar 

  • Ng S, Moses F (1996) Prediction of bridge service life using time-dependent reliability analysis. In: 3rd International conference on bridge management, University of Surrey, Guildford, UK, pp 26–33

    Google Scholar 

  • Norris JR (1997) Markov chains, 1st edn. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Parnham P (1997) Prevention of premature staining of new buildings. E & FN Spon, London

    Book  Google Scholar 

  • Parzen E (1962) Stochastic processes. Holden Day, San Francisco

    MATH  Google Scholar 

  • Plackett RL (1983) Karl Pearson and the Chi-squared test. Int Stat Rev 51(1):59–72

    Article  MathSciNet  MATH  Google Scholar 

  • Robelin C-A (2006) Facility-level and system-level stochastic optimization of bridge maintenance policies for Markovian management systems. PhD thesis in civil and environmental engineering, University of California, California, USA

    Google Scholar 

  • Robelin CA, Madanat S (2007) History-dependent bridge deck maintenance and replacement optimization with Markov decision process. J Infrastruct Syst 13(3):195–201

    Article  Google Scholar 

  • Roh Y-S, Xi Y (2000) A general A general formulation for transition probabilities of Markov model and the application to fracture of composite materials. Probab Eng Mech 15(3):241–250

    Article  Google Scholar 

  • Schouenborg B, Grelk B, Malaga K (2007) Testing and assessment of marble and limestone (TEAM) - Important results from a large European research project on cladding panels. ASTM Int 4(5):10–22

    Google Scholar 

  • Schwarz GE (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464

    Article  MathSciNet  MATH  Google Scholar 

  • Shohet I, Rosenfeld Y, Puterman M, Gilboa E (1999) Deterioration patterns for maintenance management—a methodological approach. In: 8th international conference on durability of building materials and components, Vancouver, Canada, pp 1666–1678

    Google Scholar 

  • Shtatland ES, Kleinman K, Cain EM (2002) One more time about R2 measures of fit in logistic regression. In: 15th annual Nesug conference; statistics, data analysis and econometrics, Issue M, pp 1–6

    Google Scholar 

  • Silva A, de Brito J, Gaspar PL (2012) Application of the factor method to maintenance decision support for stone cladding. Autom Constr 22(3):165–174

    Article  Google Scholar 

  • Silva A, de Brito J, Gaspar P (2013) Probabilistic analysis of the degradation evolution of stone wall cladding (directly adhered to the substrate). J Mater Civil Eng 25(2): 227–235

    Google Scholar 

  • Silva A, Neves LC, Gaspar PL, de Brito J (2015) Probabilistic transition of condition: render facades. Build Res Inf doi:10.1080/09613218.2015.1023645

    Google Scholar 

  • Singer B (1981) Estimation of nonstationary Markov chains from panel data. Sociol Methodol 12:319–337

    Article  Google Scholar 

  • Smyth GK (2003) Pearson’s goodness of fit statistic as a score test statistic. In: Goldstein DR (ed) Science and atatistics: a festschrift for terry speed. IMS lecture notes—monograph series, vol. 40. Institute of Mathematical Statistics, Hayward, California

    Google Scholar 

  • Soroka I, Carmel D (1987) Durability of external renderings in a marine environment—durability of building materials. Elsevier Science Publishers, Amsterdam, pp 61–72

    Google Scholar 

  • Stelzl I (1986) Changing causal relationships without changing the fit: some rules for generating equivalent LISREL models. Multivar Behav Res 21(3):309–331

    Article  Google Scholar 

  • Straub A (2003) Using a condition-dependent approach to maintenance to control costs and performances. Facil Manage 1(4):380–395

    Article  Google Scholar 

  • Suthar V, Tarmizi RA, Midi H, Adam MB (2010) Students’ beliefs on mathematics and achievement of university students: logistics regression analysis. In: International conference on mathematics education research (ICMER 2010). Procedia—Social and Behavioral Sciences, vol 8, pp 525–531

    Google Scholar 

  • Thomasson F (1982) Les enduits monocouches à base de liants hydrauliques. UNITECNA, France, Paris, 129p

    Google Scholar 

  • Trexler JC, Travis J (1993) Nontraditional regression analysis. Ecology 74(6):1629–1637

    Article  Google Scholar 

  • Uchwat C, MacLeod D (2012) Case studies of regression and Markov chain models. In: Conference of the transportation Association of Canada, New Brunswick, Canada, Session: pavement performance case studies (SES), 19p

    Google Scholar 

  • Veiga MR (2000) Methodology to evaluate the cracking susceptibility of mortars. Selection criteria of rendering and repointing mortars for ancient buildings. Seminar “Malte a vista com sabie locali nella conservazione degli edifici storici”, Torino, Italy, Politecnico di Torino, July, pp 1–16

    Google Scholar 

  • Wald A (1941) Asymptotically most powerful tests of statistical hypotheses. Ann Math Stat 12(1):1–19

    Article  MathSciNet  MATH  Google Scholar 

  • Wald A (1943) Tests of statistical hypotheses concerning several parameters when the number of observations is large. Trans Am Math Soc 54(3):426–482

    Article  MathSciNet  MATH  Google Scholar 

  • Wang Y (2005) A multinomial logistic regression modeling approach for anomaly intrusion detection. Comput Secur 24(8):662–674

    Article  Google Scholar 

  • Westergren A, Karlsson S, Andersson P, Ohlsson O, Hallberg IR (2001) Eating difficulties, need for assisted eating, nutritional status and pressure ulcers in patients admitted for stroke rehabilitation. J Clin Nurs 10(2):257–269

    Article  Google Scholar 

  • White JL (2013) Logistic regression model effectiveness: proportional chance criteria and proportional reduction in error. J Contemp Res Educ 2(1):4–10

    Google Scholar 

  • Witten IH, Frank E (2005) Data mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufman, Boston

    MATH  Google Scholar 

  • Wuensch KL (2011) Binary logistic regression. East Carolina University, Department of Psychology

    Google Scholar 

  • Xie XJ, Pendergast J, Clarke W (2008) Increasing the power: a practical approach to goodness-of-fit test for logistic regression models with continuous predictors. Comput Stat Data Anal 52(5):2703–2713

    Article  MathSciNet  MATH  Google Scholar 

  • Yokota H, Furuya K, Hashimoto K, Hanada S (2012) Reliability of deterioration prediction with Markov model for mooring facilities. In: IALCCE—International Association for Life-Cycle Civil Engineering, 3rd international symposium on life-cycle civil engineering, Vienna, Austria, pp 523–530, 3–6 Oct 2012

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Silva .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Silva, A., de Brito, J., Gaspar, P.L. (2016). Stochastic Models. In: Methodologies for Service Life Prediction of Buildings. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-33290-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33290-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33288-8

  • Online ISBN: 978-3-319-33290-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics