Advertisement

Banking of Human Umbilical Cord Blood Stem Cells and Their Clinical Applications

Chapter
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)

Abstract

Umbilical cord blood (UCB) is an alternative source of hematopoietic progenitor and stem cells to treat many malignant and nonmalignant disorders. This pioneering finding started with several in vitro studies that led to the first hematopoietic cell transplantation in which UCB was used instead of bone marrow. Since then the idea to preserve UCB for future use became appealing. Thereafter, many CB banks(CBBs) have been established and over the last decade it became a popular option worldwide. The full process of UCB banking includes donor recruitment, UCB collection, processing, testing, cryopreservation, storage, listing, search, selection, reservation, release, and distribution for administration. In this chapter I will highlight the first discoveries in the field of UCB, the main steps to preserve this highly enriched source of stem cells and its most established clinical applications.

Keywords

Cord blood UCB Stem cells Hematopoietic stem cells Cryopreservation Transplantation 

References

  1. 1.
    Rocha V, et al. Comparison of outcomes of unrelated bone marrow and umbilical cord blood transplants in children with acute leukemia. Blood. 2001;97(10):2962–71.CrossRefPubMedGoogle Scholar
  2. 2.
    Laughlin MJ, et al. Outcomes after transplantation of cord blood or bone marrow from unrelated donors in adults with leukemia. N Engl J Med. 2004;351(22):2265–75.CrossRefPubMedGoogle Scholar
  3. 3.
    Woodard P, et al. Unrelated donor bone marrow transplantation for myelodysplastic syndrome in children. Biol Blood Marrow Transplant. 2011;17(5):723–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Ruggeri A, et al. Umbilical cord blood transplantation for children with thalassemia and sickle cell disease. Biol Blood Marrow Transplant. 2011;17(9):1375–82.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gluckman E, et al. Results of unrelated cord blood transplant in Fanconi anemia patients: risk factor analysis for engraftment and survival. Biol Blood Marrow Transplant. 2007;13(9):1073–82.CrossRefPubMedGoogle Scholar
  6. 6.
    Tsuji Y, et al. Hematopoietic stem cell transplantation for 30 patients with primary immunodeficiency diseases: 20 years experience of a single team. Bone Marrow Transplant. 2006;37(5):469–77.CrossRefPubMedGoogle Scholar
  7. 7.
    Gratwohl A, Baldomero H. European survey on clinical use of cord blood for hematopoietic and non-hematopoietic indications. Transfus Apher Sci. 2010;42(3):265–75.CrossRefPubMedGoogle Scholar
  8. 8.
    Sutherland DR, Keating A. The CD34 antigen: structure, biology, and potential clinical applications. J Hematother. 1992;1(2):115–29.CrossRefPubMedGoogle Scholar
  9. 9.
    Sutherland DR, et al. Sensitive detection and enumeration of CD34+ cells in peripheral and cord blood by flow cytometry. Exp Hematol. 1994;22(10):1003–10.PubMedGoogle Scholar
  10. 10.
    Zarrabi M, et al. Potential uses for cord blood mesenchymal stem cells. Cell J. 2014;15(4):274–81.PubMedGoogle Scholar
  11. 11.
    Knudtzon S. In vitro growth of granulocytic colonies from circulating cells in human cord blood. Blood. 1974;43(3):357–61.PubMedGoogle Scholar
  12. 12.
    Nakahata T, Ogawa M. Hemopoietic colony-forming cells in umbilical cord blood with extensive capability to generate mono- and multipotential hemopoietic progenitors. J Clin Invest. 1982;70(6):1324–8.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Leary AG, Ogawa M. Blast cell colony assay for umbilical cord blood and adult bone marrow progenitors. Blood. 1987;69(3):953–6.PubMedGoogle Scholar
  14. 14.
    Broxmeyer HE, et al. Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci U S A. 1989;86(10):3828–32.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Gluckman E, et al. Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med. 1989;321(17):1174–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Ballen K. Challenges in umbilical cord blood stem cell banking for stem cell reviews and reports. Stem Cell Rev. 2010;6(1):8–14.CrossRefPubMedGoogle Scholar
  17. 17.
    Sullivan MJ. Banking on cord blood stem cells. Nat Rev Cancer. 2008;8(7):555–63.CrossRefPubMedGoogle Scholar
  18. 18.
    Kline RM. Whose blood is it, anyway? Sci Am. 2001;284(4):42–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Rosenthal J, et al. Hematopoietic cell transplantation with autologous cord blood in patients with severe aplastic anemia: an opportunity to revisit the controversy regarding cord blood banking for private use. Pediatr Blood Cancer. 2011;56(7):1009–12.CrossRefPubMedGoogle Scholar
  20. 20.
    Barker JN, et al. Availability of cord blood extends allogeneic hematopoietic stem cell transplant access to racial and ethnic minorities. Biol Blood Marrow Transplant. 2010;16(11):1541–8.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Arcese W, et al. Clinical use of allogeneic hematopoietic stem cells from sources other than bone marrow. Haematologica. 1998;83(2):159–82.PubMedGoogle Scholar
  22. 22.
    Standars, T.F.f.t.A.o.C.T.F. http://www.factwebsite.org/
  23. 23.
    Origin, I.-T.G.I.S.f.M.P.o.H. https://www.iccbba.org/
  24. 24.
    Solves P, et al. A new automatic device for routine cord blood banking: critical analysis of different volume reduction methodologies. Cytotherapy. 2009;11(8):1101–7.CrossRefPubMedGoogle Scholar
  25. 25.
    Akel S, et al. Current thawing and infusion practice of cryopreserved cord blood: the impact on graft quality, recipient safety, and transplantation outcomes. Transfusion. 2014;54(11):2997–3009.CrossRefPubMedGoogle Scholar
  26. 26.
    Young W. Plasma-depleted versus red cell-reduced umbilical cord blood. Cell Transplant. 2014;23(4–5):407–15.CrossRefPubMedGoogle Scholar
  27. 27.
    Broxmeyer HE, et al. Hematopoietic stem/progenitor cells, generation of induced pluripotent stem cells, and isolation of endothelial progenitors from 21- to 23.5-year cryopreserved cord blood. Blood. 2011;117(18):4773–7.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Smogorzewska EM, Barsky LW, Crooks GM, Wienberg KI. Purification of hematopoietic stem cells from human bone marrow and umbilical cord blood. Cent Eur J Immunol. 1997;22:232–9.Google Scholar
  29. 29.
    Stojko R, Witek A. Umbilical cord blood—a perfect source of stem cells? Ginekol Pol. 2005;76(6):491–7.PubMedGoogle Scholar
  30. 30.
    Mok JO, Byun JH, Kim SJ, Jeon JW, Won JH, Baick SH, Suh WS, Hong DS, Park HS. Comparison of the clonogenicity and percentage of CD34 positive cells in each source of hematopoietic stem cells. Korean J Blood Marrow Transplant. 1996;1:97–106.Google Scholar
  31. 31.
    Rocha V, et al. Graft-versus-host disease in children who have received a cord-blood or bone marrow transplant from an HLA-identical sibling. Eurocord and International Bone Marrow Transplant Registry Working Committee on Alternative Donor and Stem Cell Sources. N Engl J Med. 2000;342(25):1846–54.CrossRefPubMedGoogle Scholar
  32. 32.
    Wagner JE, et al. Allogeneic sibling umbilical-cord-blood transplantation in children with malignant and non-malignant disease. Lancet. 1995;346(8969):214–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Gluckman E, et al. Outcome of cord-blood transplantation from related and unrelated donors. Eurocord Transplant Group and the European Blood and Marrow Transplantation Group. N Engl J Med. 1997;337(6):373–81.CrossRefPubMedGoogle Scholar
  34. 34.
    Barker JN, et al. Survival after transplantation of unrelated donor umbilical cord blood is comparable to that of human leukocyte antigen-matched unrelated donor bone marrow: results of a matched-pair analysis. Blood. 2001;97(10):2957–61.CrossRefPubMedGoogle Scholar
  35. 35.
    Kurtzberg J, et al. Results of the cord blood transplantation study (COBLT): clinical outcomes of unrelated donor umbilical cord blood transplantation in pediatric patients with hematologic malignancies. Blood. 2008;112(10):4318–27.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Wagner JE, et al. Transplantation of unrelated donor umbilical cord blood in 102 patients with malignant and nonmalignant diseases: influence of CD34 cell dose and HLA disparity on treatment-related mortality and survival. Blood. 2002;100(5):1611–8.PubMedGoogle Scholar
  37. 37.
    Laughlin MJ, et al. Hematopoietic engraftment and survival in adult recipients of umbilical-cord blood from unrelated donors. N Engl J Med. 2001;344(24):1815–22.CrossRefPubMedGoogle Scholar
  38. 38.
    Rocha V, et al. Transplants of umbilical-cord blood or bone marrow from unrelated donors in adults with acute leukemia. N Engl J Med. 2004;351(22):2276–85.CrossRefPubMedGoogle Scholar
  39. 39.
    Eapen M, Wagner JE. Transplant outcomes in acute leukemia. I. Semin Hematol. 2010;47(1):46–50.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Shpall EJ, et al. Transplantation of ex vivo expanded cord blood. Biol Blood Marrow Transplant. 2002;8(7):368–76.CrossRefPubMedGoogle Scholar
  41. 41.
    de Lima M, et al. Transplantation of ex vivo expanded cord blood cells using the copper chelator tetraethylenepentamine: a phase I/II clinical trial. Bone Marrow Transplant. 2008;41(9):771–8.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    de Lima M, et al. Cord-blood engraftment with ex vivo mesenchymal-cell coculture. N Engl J Med. 2012;367(24):2305–15.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Horwitz ME, et al. Umbilical cord blood expansion with nicotinamide provides long-term multilineage engraftment. J Clin Invest. 2014;124(7):3121–8.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Barker JN, et al. Transplantation of 2 partially HLA-matched umbilical cord blood units to enhance engraftment in adults with hematologic malignancy. Blood. 2005;105(3):1343–7.CrossRefPubMedGoogle Scholar
  45. 45.
    MacMillan ML, et al. Acute graft-versus-host disease after unrelated donor umbilical cord blood transplantation: analysis of risk factors. Blood. 2009;113(11):2410–5.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Kindwall-Keller TL, et al. Prospective study of one- vs two-unit umbilical cord blood transplantation following reduced intensity conditioning in adults with hematological malignancies. Bone Marrow Transplant. 2012;47(7):924–33.CrossRefPubMedGoogle Scholar
  47. 47.
    Rocha V, et al. Unrelated cord blood transplantation: outcomes after single-unit intrabone injection compared with double-unit intravenous injection in patients with hematological malignancies. Transplantation. 2013;95(10):1284–91.CrossRefPubMedGoogle Scholar
  48. 48.
    Brunstein CG, et al. Intra-BM injection to enhance engraftment after myeloablative umbilical cord blood transplantation with two partially HLA-matched units. Bone Marrow Transplant. 2009;43(12):935–40.CrossRefPubMedGoogle Scholar
  49. 49.
    Frassoni F, et al. The intra-bone marrow injection of cord blood cells extends the possibility of transplantation to the majority of patients with malignant hematopoietic diseases. Best Pract Res Clin Haematol. 2010;23(2):237–44.CrossRefPubMedGoogle Scholar
  50. 50.
    Aiuti A, et al. The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood. J Exp Med. 1997;185(1):111–20.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Kim CH, Broxmeyer HE. In vitro behavior of hematopoietic progenitor cells under the influence of chemoattractants: stromal cell-derived factor-1, steel factor, and the bone marrow environment. Blood. 1998;91(1):100–10.PubMedGoogle Scholar
  52. 52.
    Christopherson 2nd KW, et al. CD26 inhibition on CD34+ or lineage- human umbilical cord blood donor hematopoietic stem cells/hematopoietic progenitor cells improves long-term engraftment into NOD/SCID/Beta2null immunodeficient mice. Stem Cells Dev. 2007;16(3):355–60.CrossRefPubMedGoogle Scholar
  53. 53.
    Farag SS, et al. In vivo DPP-4 inhibition to enhance engraftment of single-unit cord blood transplants in adults with hematological malignancies. Stem Cells Dev. 2013;22(7):1007–15.CrossRefPubMedGoogle Scholar
  54. 54.
    Reca R, et al. Functional receptor for C3a anaphylatoxin is expressed by normal hematopoietic stem/progenitor cells, and C3a enhances their homing-related responses to SDF-1. Blood. 2003;101(10):3784–93.CrossRefPubMedGoogle Scholar
  55. 55.
    Brunstein CG, et al. Complement fragment 3a priming of umbilical cord blood progenitors: safety profile. Biol Blood Marrow Transplant. 2013;19(10):1474–9.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    North TE, et al. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature. 2007;447(7147):1007–11.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Cutler C, et al. Prostaglandin-modulated umbilical cord blood hematopoietic stem cell transplantation. Blood. 2013;122(17):3074–81.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Gluckman PD, et al. Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomised trial. Lancet. 2005;365(9460):663–70.CrossRefPubMedGoogle Scholar
  59. 59.
    Shankaran S, et al. Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N Engl J Med. 2005;353(15):1574–84.CrossRefPubMedGoogle Scholar
  60. 60.
    Sanchez-Ramos JR, et al. Expression of neural markers in human umbilical cord blood. Exp Neurol. 2001;171(1):109–15.CrossRefPubMedGoogle Scholar
  61. 61.
    Buzanska L, et al. Human cord blood-derived cells attain neuronal and glial features in vitro. J Cell Sci. 2002;115(Pt 10):2131–8.PubMedGoogle Scholar
  62. 62.
    Escolar ML, et al. Transplantation of umbilical-cord blood in babies with infantile Krabbe’s disease. N Engl J Med. 2005;352(20):2069–81.CrossRefPubMedGoogle Scholar
  63. 63.
    Staba SL, et al. Cord-blood transplants from unrelated donors in patients with Hurler’s syndrome. N Engl J Med. 2004;350(19):1960–9.CrossRefPubMedGoogle Scholar
  64. 64.
    Cotten CM, et al. Feasibility of autologous cord blood cells for infants with hypoxic-ischemic encephalopathy. J Pediatr. 2014;164(5):973–9.CrossRefPubMedGoogle Scholar
  65. 65.
    Min K, et al. Umbilical cord blood therapy potentiated with erythropoietin for children with cerebral palsy: a double-blind, randomized, placebo-controlled trial. Stem Cells. 2013;31(3):581–91.CrossRefPubMedGoogle Scholar
  66. 66.
    Jensen A, Hamelmann E. First autologous cell therapy of cerebral palsy caused by hypoxic-ischemic brain damage in a child after cardiac arrest-individual treatment with cord blood. Case Rep Transplant. 2013;951827(10):15.Google Scholar
  67. 67.
    Lee YH, et al. Safety and feasibility of countering neurological impairment by intravenous administration of autologous cord blood in cerebral palsy. J Transl Med. 2012;10(58):1479–5876.Google Scholar
  68. 68.
    Hutter G, et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med. 2009;360(7):692–8.CrossRefPubMedGoogle Scholar
  69. 69.
    Duarte RF, et al. CCR5 Delta32 homozygous cord blood allogeneic transplantation in a patient with HIV: a case report. Lancet HIV. 2015;2(6):e236–42.CrossRefPubMedGoogle Scholar
  70. 70.
    Hutter G. More on shift of HIV tropism in stem-cell transplantation with CCR5 delta32/delta32 mutation. N Engl J Med. 2014;371(25):2437–8. doi: 10.1056/NEJMc1412279#SA1.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Cord Blood Bank, King Abdullah International Medical Research Center (KAIMRC)King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health AffairsRiyadhSaudi Arabia

Personalised recommendations