Skip to main content

Clinical Applications of Induced Pluripotent Stem Cells in Cancer

  • Chapter
  • First Online:
Recent Advances in Stem Cells

Abstract

Several approaches have been used to understand cancer pathogenesis. The discovery of the human induced pluripotent stem cells (hiPSCs) opens a new perspective to study different diseases, including cancer. These cells have two important properties, which are the self-renewal capacity and the ability to differentiate into any cell type of the human body. Basic research in the hiPSCs field has made progress in the application of new strategies with the aim to enable an efficient production of high quality of hiPSCs for safety and efficacy, necessary to future applications for clinical practice. In this chapter, we show the recent advances in hiPSCs’ basic research and some potential clinical applications in cancer. We also present the importance in using statistical methods to evaluate the possible validation of hiPSCs for therapeutic use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chin L, Gray JW. Translating insights from the cancer genome into clinical practice. Nature. 2008;452:553–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Grob B, Pittermann E, Reinhardt D, Cantz T, Klusmann JH. Prospects and challenges of reprogrammed cells in hematology and oncology. Pediatr Hematol Oncol. 2012;29:507–28.

    Article  CAS  Google Scholar 

  3. Kumano K, Arai S, Hosoi M, Taoka K, Takayama N, Otsu M, Nagae G, Ueda K, Nakazaki K, Kamikubo Y, Eto K, Aburatani H, Nakauchi H, Kurokawa M. Generation of induced pluripotent stem cells from primary chronic myelogenous leukemia patient samples. Blood. 2012;119:6234–42.

    Article  CAS  PubMed  Google Scholar 

  4. Suzuki A, Matsushima K, Makinoshima H, Sugano S, Kohno T, Tsuchihara K, Suzuki Y. Single-cell analysis of lung adenocarcinoma cell lines reveals diverse expression patterns of individual cells invoked by a molecular target drug treatment. Genome Biol. 2015;16:66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Wills QF, Mead AJ. Application of single-cell genomics in cancer: promise and challenges. Hum Mol Genet. 2015;24:R74–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Takahashi K, Yamanaka S. Induced pluripotent stem cells in medicine and biology. Development. 2013;140:2457–61.

    Article  CAS  PubMed  Google Scholar 

  7. Greaves M, Maley CC. Clonal evolution in cancer. Nature. 2012;481:306–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Urruticoechea A, Alemany R, Balart J, Villanueva A, Viñals F, Capellá G. Recent advances in cancer therapy: an overview. Curr Pharm Des. 2010;16:3–10.

    Article  CAS  PubMed  Google Scholar 

  9. Chung L, Baxter RC. Breast cancer biomarkers: proteomic discovery and translation to clinically relevant assays. Expert Rev Proteomics. 2012;9:599–614.

    Article  CAS  PubMed  Google Scholar 

  10. Fang WJ, Zheng Y, Wu LM, Ke QH, Shen H, Yuan Y, Zheng SS. Genome-wide analysis of aberrant DNA methylation for identification of potential biomarkers in colorectal cancer patients. Asian Pac J Cancer Prev. 2012;13:1917–21.

    Article  PubMed  Google Scholar 

  11. Fenderico N, Casamichele A, Profumo V, Zaffaroni N, Gandellini P. MicroRNA-mediated control of prostate cancer metastasis: implications for the identification of novel biomarkers and therapeutic targets. Curr Med Chem. 2013;20:1566–84.

    Article  CAS  PubMed  Google Scholar 

  12. Kalari S, Pfeifer GP. Identification of driver and passenger DNA methylation in cancer by epigenomic analysis. Adv Genet. 2010;70:277–308.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Pixberg CF, Schulz WA, Stoecklein NH, Neves RPL. Characterization of DNA methylation in circulating tumor cells. Genes. 2015;6:1053–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rodrigues EF, Santos-Rebouças CB, Gonçalves Pimentel MM, Mencalha AL, Dobbin J, Da Costa ES, Fernandez CS, Bouzas LF, Abdelhay E, Fernandez TS. Epigenetic alterations of p15(INK4B) and p16(INK4A) genes in pediatric primary myelodysplastic syndrome. Leuk Lymphoma. 2010;10:1887–94.

    Article  CAS  Google Scholar 

  15. Frame FM, Maitland NJ. Cancer stem cells, models of study and implications of therapy resistance mechanisms. Adv Exp Med Biol. 2011;720:105–18.

    Article  CAS  PubMed  Google Scholar 

  16. Ito T. Stem cell maintenance and disease progression in chronic myeloid leukemia. Int J Hematol. 2013;98:641–7.

    Article  CAS  PubMed  Google Scholar 

  17. Zhou BB, Zhang H, Damelin M, Geles KG, Grindley JC, Dirks PB. Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov. 2009;8:806–23.

    Article  CAS  PubMed  Google Scholar 

  18. Fernandez TS, de Souza FC, Mencalha AL. Human induced pluripotent stem cells from basic research to potential clinical applications in cancer. Biomed Res Int. 2013;13:430290.

    Google Scholar 

  19. Hussein SM, Nagy AA. Progress made in the reprogramming field: new factors, new strategies and a new outlook. Curr Opin Genet Dev. 2012;22:435–43.

    Article  CAS  PubMed  Google Scholar 

  20. Teoh HK, Cheong SK. Induced pluripotent stem cells in research and therapy. Malays J Pathol. 2012;34:1–13.

    PubMed  Google Scholar 

  21. Walia B, Satija N, Tripathi RP, Gangenahalli GU. Induced pluripotent stem cells: fundamentals and applications of the reprogramming process and its ramifications on regenerative medicine. Stem Cell Rev. 2012;8:100–15.

    Article  CAS  PubMed  Google Scholar 

  22. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

    Article  CAS  PubMed  Google Scholar 

  23. Niwa H, Miyazaki J, Smith AG. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet. 2000;24:372–6.

    Article  CAS  PubMed  Google Scholar 

  24. Rodda DJ, Chew JL, Lim LH, Loh YH, Wang B, Ng HH, Robson P. Transcriptional regulation of nanog by OCT4 and SOX2. J Biol Chem. 2005;280:24731–7.

    Article  CAS  PubMed  Google Scholar 

  25. Jiang J, Chan YS, Loh YH, Cai J, Tong GQ, Lim CA, Robson P, Zhong S, Ng HH. A core Klf circuitry regulates self-renewal of embryonic stem cells. Nat Cell Biol. 2008;10:353–60.

    Article  PubMed  CAS  Google Scholar 

  26. Coll J, Saule S, Martin P, Raes MB, Lagrou C, Graf T, Beug H, Simon IE, Stehelin D. The cellular oncogenes c-myc, c-myb and c-erb are transcribed in defined types of avian hematopoietic cells. Exp Cell Res. 1983;149:151–62.

    Article  CAS  PubMed  Google Scholar 

  27. Hayward WS, Neel BG, Astrin SM. Activation of a cellular oncogene by promoter insertion in ALV-induced lymphoid leukosis. Nature. 1981;290:475–80.

    Article  CAS  PubMed  Google Scholar 

  28. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.

    Article  CAS  PubMed  Google Scholar 

  29. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917–20.

    Article  CAS  PubMed  Google Scholar 

  30. Nobel Media AB Web. The 2012 Nobel Prize in Physiology or Medicine—Press Release, Nobelprize.org. http://www.nobelprize.org/nobel_prizes/medicine/laureates/2012/press.html (2013). Accessed 2 Aug 2013

  31. Shoemaker C, Goff S, Gilboa E, Paskind M, Mitra SW, Baltimore D. Structure of a cloned circular Moloney murine leukemia virus DNA molecule containing an inverted segment: implications for retrovirus integration. Proc Natl Acad Sci U S A. 1980;77:3932–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Laurent LC, Ulitsky I, Slavin I, Tran H, Schork A, Morey R, Lynch C, Harness JV, Lee S, Barrero MJ, Ku S, Martynova M, Semechkin R, Galat V, Gottesfeld J, Izpisua Belmonte JC, Murry C, Keirstead HS, Park HS, Schmidt U, Laslett AL, Muller FJ, Nievergelt CM, Shamir R, Loring JF. Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell. 2011;8:106–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pasi CE, Dereli-Öz A, Negrini S, Friedli M, Fragola G, Lombardo A, Van Houwe G, Naldini L, Casola S, Testa G, Trono D, Pelicci PG, Halazonetis TD. Genomic instability in induced stem cells. Cell Death Differ. 2011;18:745–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Marión RM, Strati K, Li H, Murga M, Blanco R, Ortega S, Fernandez-Capetillo O, Serrano M, Blasco MA. A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature. 2009;460:1149–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Harui A, Suzuki S, Kochanek S, Mitani K. Frequency and stability of chromosomal integration of adenovirus vectors. J Virol. 1999;73:6141–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007;448:313–7.

    Article  CAS  PubMed  Google Scholar 

  37. Halazonetis TD, Gorgoulis VG, Bartek J. An oncogene-induced DNA damage model for cancer development. Science. 2008;319:1352–5.

    Article  CAS  PubMed  Google Scholar 

  38. Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP. Vertebrate microRNA genes. Science. 2003;299:1540.

    Article  CAS  PubMed  Google Scholar 

  39. Malchenko S, Galat V, Seftor EA, Vanin EF, Costa FF, Seftor REB, Soares MB, Hendrix MJC. Cancer hallmarks in induced pluripotent cells: new insights. J Cell Physiol. 2010;225:390–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10:155–9.

    Article  CAS  PubMed  Google Scholar 

  41. Payer B, Rosenberg M, Yamaji M, Yabuta Y, Koyanagi-Aoi M, Hayashi K, Yamanaka S, Saitou M, Lee JT. Tsix RNA and the germline factor, PRDM14, link X reactivation and stem cell reprogramming. Mol Cell. 2013;52:805–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fort A, Yamada D, Hashimoto K, Koseki H, Carninci P. Nuclear transcriptome profiling of induced pluripotent stem cells and embryonic stem cells identify non-coding loci resistant to reprogramming. Cell Cycle. 2015;14:1148–55.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chun YS, Byun K, Lee B. Induced pluripotent stem cells and personalized medicine: current progress and future perspectives. Anat Cell Biol. 2011;44:245–55.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Talluri TR, Kumar D, Glage S, Garrels W, Ivics Z, Debowski K, Behr R, Kues WA. Non-viral reprogramming of fibroblasts into induced pluripotent stem cells by Sleeping Beauty and PiggyBac transposons. Biochem Biophys Res Commun. 2014;450:581–7.

    Article  CAS  PubMed  Google Scholar 

  45. Vand Rajabpour F, Raoofian R, Habibi L, Akrami SM, Tabrizi M. Novel trends in genetics: transposable elements and their application in medicine. Arch Iran Med. 2014;17:702–12.

    PubMed  Google Scholar 

  46. Ishibashi M, Mechaly AS, Becker TS, Rinkwitz S. Using zebrafish transgenesis to test human genomic sequences for specific enhancer activity. Methods. 2013;62:216–25.

    Article  CAS  PubMed  Google Scholar 

  47. Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hämäläinen R, Cowling R, Wang W, Liu P, Gertsenstein M, Kaji K, Sung HK, Nagy A. Piggyback transposition reprograms fibroblasts to induced pluripotent stem cells. Nature. 2009;458:766–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cadiñanos J, Bradley A. Generation of an inducible and optimized piggyback transposon system. Nucleic Acids Res. 2007;35:e87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Kowarz E, Löscher D, Marschalek R. Optimized sleeping beauty transposons rapidly generate stable transgenic cell lines. Biotechnol J. 2015;10:647–53.

    Article  CAS  PubMed  Google Scholar 

  50. Kay MA, He CY, Chen ZY. A robust system for production of minicircle DNA vectors. Nat Biotechnol. 2010;28:1287–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cheng L, Hansen NF, Zhao L, Du Y, Zou C, Donovan FX, Chou BK, Zhou G, Li S, Dowey SN, Ye Z, NISC Comparative Sequencing Program, Chandrasekharappa SC, Yang H, Mullikin JC, Liu PP. Low incidence of DNA sequence variation in human induced pluripotent stem cells generated by nonintegrating plasmid expression. Cell Stem Cell. 2012;10:337–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ruiz S, Lopez-Contreras AJ, Gabut M, Marion RM, Gutierrez-Martinez P, Bua S, Ramirez O, Olalde I, Rodrigo-Perez S, Li H, Marques-Bonet T, Serrano M, Blasco MA, Batada NN, Fernandez-Capetillo O. Limiting replication stress during somatic cell reprogramming reduces genomic instability in induced pluripotent stem cells. Nat Commun. 2015;6:8036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ban H, Nishishita N, Fusaki N, Tabata T, Saeki K, Shikamura M, Takada N, Inoue M, Hasegawa M, Kawamata S, Nishikawa S. Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors. Proc Natl Acad Sci U S A. 2011;108:14234–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Churko JM, Burridge PW, Wu JC. Generation of human iPSCs from human peripheral blood mononuclear cells using non-integrative Sendai virus in chemically defined conditions. Methods Mol Biol. 2013;1036:81–8.

    Article  CAS  PubMed  Google Scholar 

  55. Hu K, Slukvin I. Generation of transgene-free iPSC lines from human normal and neoplastic blood cells using episomal vectors. Methods Mol Biol. 2013;997:163–76.

    Article  CAS  PubMed  Google Scholar 

  56. Kudva YC, Ohmine S, Greder LV, Dutton JR, Armstrong A, De Lamo JG, Khan YK, Thatava T, Hasegawa M, Fusaki N, Slack JM, Ikeda Y. Transgene-free disease-specific induced pluripotent stem cells from patients with type 1 and type 2 diabetes. Stem Cells Transl Med. 2012;1:451–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Narsinh KH, Jia F, Robbins RC, Kay MA, Longaker MT, Wu JC. Generation of adult human induced pluripotent stem cells using nonviral minicircle DNA vectors. Nat Protoc. 2011;6:78–88.

    Article  CAS  PubMed  Google Scholar 

  58. Zhou H, Ding S. Evolution of induced pluripotent stem cell technology. Curr Opin Hematol. 2010;17:276–80.

    Article  PubMed  Google Scholar 

  59. Salk JJ, Fox EJ, Loeb LA. Mutational heterogeneity in human cancers: origin and consequences. Annu Rev Pathol. 2010;5:51–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz Jr LA, Kenneth W, Kinzler KW. Cancer genome landscapes. Science. 2013;339:1546–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Karley D, Gupta D, Tiwari A. Biomarker for cancer: a great promise for future. World J Oncol. 2011;2:151–7.

    CAS  Google Scholar 

  62. Gonzalez-Angulo AM, Hennessy BT, Mills GB. Future of personalized medicine in oncology: a systems biology approach. J Clin Oncol. 2010;28:2777–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hu K, Yu J, Suknuntha K, Tian S, Montgomery K, Choi KD, Stewart R, Thomson JA, Slukvin II. Efficient generation of transgene-free induced pluripotent stem cells from normal and neoplastic bone marrow and cord blood mononuclear cells. Blood. 2011;117:e109–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Miyoshi N, Ishii H, Nagai K, Hoshino H, Mimori K, Tanaka F, Nagano H, Sekimoto M, Doki Y, Mori M. Defined factors induce reprogramming of gastrointestinal cancer cells. Proc Natl Acad Sci U S A. 2010;107:40–5.

    Article  CAS  PubMed  Google Scholar 

  65. Ye Z, Zhan H, Mali P, Dowey S, Williams DM, Jang YY, Dang CV, Spivak JL, Moliterno AR, Cheng L. Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood. 2009;114:5473–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kim J, Hoffman JP, Alpaugh RK, Rhim AD, Reichert M, Stanger BZ, Furth EE, Sepulveda AR, Yuan CX, Won KJ, Donahue G, Sands J, Gumbs AA, Zaret KS. An iPSC line from human pancreatic ductal adenocarcinoma undergoes early to invasive stages of pancreatic cancer progression. Cell Rep. 2013;3:2088–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Suvà ML, Riggi N, Bernstein BE. Epigenetic reprogramming in cancer. Science. 2013;339:1567–70.

    Article  PubMed  CAS  Google Scholar 

  68. Curry EL, Moad M, Robson CN, Heer R. Using induced pluripotent stem cells as a tool for modeling carcinogenesis. World J Stem Cells. 2015;26:461–9.

    Article  Google Scholar 

  69. Kim JJ. Applications of iPSCs in cancer research. Biomark Insights. 2015;10(S1):125.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Gandre-Babbe S, Paluru P, Aribeana C, Chou ST, Bresolin S, Lu L, Sullivan SK, Tasian SK, Weng J, Favre H, Choi JK, French DL, Loh ML, Weiss MJ. Patient-derived induced pluripotent stem cells recapitulate hematopoietic abnormalities of juvenile myelomonocytic leukemia. Blood. 2013;121:4925–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fernandez TS, Ornellas MH, Otero de Carvalho L, Tabak D, Abdelhay E. Chromosomal alterations associated with evolution from myelodysplastic syndrome to acute myeloid leukemia. Leuk Res. 2000;24:839–48.

    Article  Google Scholar 

  72. Fernandez TS, Mencalha AL, Fernandez CS. Epigenetics in cancer: the myelodysplastic syndrome as a model to study epigenetic alterations as diagnostic and prognostic biomarkers. In: Khan TK, editor. Biomarker. 1st ed. Rijeka, Croatia: InTech; 2012.

    Google Scholar 

  73. Kotini AG, Chang CJ, Boussaad I, Delrow JJ, Dolezal EK, Nagulapally AB, Perna F, Fishbein GA, Klimek VM, Hawkins RD, Huangfu D, Murry CE, Graubert T, Nimer SD, Papapetrou EP. Functional analysis of a chromosomal deletion associated with myelodysplastic syndromes using isogenic human induced pluripotent stem cells. Nat Biotechnol. 2015;33:646–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lee DF, Su J, Schaniel D, Lemischka IR. Modeling familial cancer with induced pluripotent stem cells. Cell. 2015;161:240–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Miyazaki S, Yamamoto H, Miyoshi N, Takahashi H, Suzuki Y, Haraguchi N, Ishii H, Doki Y, Mori M. Emerging methods for preparing iPS cells. Jpn J Clin Oncol. 2012;42:773–9.

    Article  PubMed  Google Scholar 

  76. Ramos-Mejia V, Fraga MF, Menendez P. iPSCs from cancer cells: challenges and opportunities. Trends Mol Med. 2012;18:245–7.

    Article  CAS  PubMed  Google Scholar 

  77. Corominas-Faja B, Cufí S, Oliveras-Ferraros C, Cuyàs E, López-Bonet E, Lupu R, Alarcón T, Vellon L, Iglesias JM, Leis O, Martín AG, Vazquez-Martin A, Menendez JA. Nuclear reprogramming of luminal-like breast cancer cells generates Sox2-overexpressing cancer stem-like cellular states harboring transcriptional activation of the mTOR pathway. Cell Cycle. 2013;12:3109–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lin SL, Chang DC, Chang-Lin S, Lin CH, Wu DT, Chen DT, Ying SY. Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. RNA. 2008;14:2115–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Utikal J, Maherali N, Kulalert W, Hochedlinger K. Sox2 is dispensable for the reprogramming of melanocytes and melanoma cells into induced pluripotent stem cells. J Cell Sci. 2009;122:3502–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mathieu J, Zhang Z, Zhou W, Wang AJ, Heddleston JM, Pinna CM, Hubaud A, Stadler B, Choi M, Bar M, Tewari M, Liu A, Vessella R, Rostomily R, Born D, Horwitz M, Ware C, Blau CA, Cleary MA, Rich JN, Ruohola-Baker H. HIF induces human embryonic stem cell markers in cancer cells. Cancer Res. 2011;71:4640–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhang X, Dela Cruz F, Terry M, Remotti F, Matushansky I. Terminal differentiation and loss of tumorigenicity of human cancers via pluripotency based reprogramming. Oncogene. 2013;32:2249–60.

    Article  CAS  PubMed  Google Scholar 

  82. Moore JB, Loeb DM, Hong KU, Sorensen PH, Triche TJ, Lee DW, Barbato MI, Arceci RJ. Epigenetic reprogramming and re-differentiation of a Ewing sarcoma cell line. Front Cell Dev Biol. 2015;3:15.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Carrette JE, Pruszak J, Varadarajan M, Blomen VA, Gokhale S, Camargo FD, Wernig M, Jaenisch R, Brummelkamp TR. Generation of iPSCs from cultured human malignant cells. Blood. 2010;115:4039–42.

    Google Scholar 

  84. Laustriat D, Gide J, Peschanski M. Human pluripotent stem cells in drug discovery and predictive toxicology. Biochem Soc Trans. 2010;38:1051–7.

    Article  CAS  PubMed  Google Scholar 

  85. Singh VK, Kalsan M, Kumar N, Saini A, Chandra R. Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery. Front Cell Dev Biol. 2015;3:1–18.

    Article  Google Scholar 

  86. Li C, Ruan J, Yang M, Pan F, Gao G, Qu S, Shen YL, Dang YJ, Wang K, Jin W, Cui W. Human induced pluripotent stem cells labeled with fluorescent magnetic nanoparticles for targeted imaging and hyperthermia therapy for gastric cancer. Cancer Biol Med. 2015;12:163–74.

    PubMed  PubMed Central  Google Scholar 

  87. Yang J, Lam DH, Goh SS, Lee EX, Zhao Y, Tay FC, Chen C, Du S, Balasundaram G, Hahbazi M, Tham CK, Ng WH, Toh HC, Wang S. Tumor tropism of intravenously injected human-induced pluripotent stem cell-derived neural stem cells and their gene therapy application in a metastatic breast cancer model. Stem Cells. 2012;30:1021–9.

    Article  CAS  PubMed  Google Scholar 

  88. Iwamoto H, Ojima T, Hayata K, Katsuda M, Miyazawa M, Iida T, Nakamura M, Nakamori M, Iwahashi M, Yamaue H. Antitumor immune response of dendritic cells (DCs) expressing tumor-associated antigens derived from induced pluripotent stem cells: in comparison to bone marrow-derived DCs. Int J Cancer. 2014;134:332–41.

    Article  PubMed  CAS  Google Scholar 

  89. Nishimura T, Kaneko S, Kawana-Tachikawa A, Tajima Y, Goto H, Zhu D, Nakayama-Hosoya K, Iriguchi S, Uemura Y, Shimizu T, Takayama N, Yamada D, Nishimura K, Ohtaka M, Watanabe N, Takahashi S, Iwamoto A, Koseki H, Nakanishi M, Eto K, Nakauchi H. Generation of rejuvenated antigen-specific T cells by reprogramming to pluripotency and redifferentiation. Cell Stem Cell. 2013;12:114–26.

    Article  CAS  PubMed  Google Scholar 

  90. Stroncek DF, Berger C, Cheever MA, Childs RW, Dudley ME, Flynn P, Gattinoni L, Heath JR, Kalos M, Marincola FM, Miller JS, Mostoslavsky G, Powell Jr DJ, Rao M, Restifo NP, Rosenberg SA, O’Shea J, Melief CJ. New directions in cellular therapy of cancer: a summary of the summit on cellular therapy for cancer. J Transl Med. 2012;15:10–48.

    Google Scholar 

  91. Watarai H, Yamada D, Fujii S, Taniguchi M, Koseki H. Induced pluripotency as a potential path towards iNKT cell-mediated cancer immunotherapy. Int J Hematol. 2012;95:624–31.

    Article  CAS  PubMed  Google Scholar 

  92. Kirkwood JM, Butterfield LH, Tarhini AA, Zarour H, Kalinski P, Ferrone S. Immunotherapy of cancer in 2012. CA Cancer J Clin. 2012;62:309–35.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Restifo NP, Dudley ME, Rosenberg SA. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol. 2012;12:269–81.

    Article  CAS  PubMed  Google Scholar 

  94. McKee MD, Fichera A, Nishimura MI. T cell immunotherapy. Front Biosci. 2007;12:919–32.

    Article  CAS  PubMed  Google Scholar 

  95. Lei F, Haque G, Xiong X, Song JJ. Directed differentiation of induced pluripotent stem cells towards T lymphocytes. J Vis Exp. 2012;63:e3986.

    PubMed  Google Scholar 

  96. Vizcardo R, Masuda K, Yamada D, Ikawa D, Shimizu K, Fujii S, Koseki H, Kawamoto H. Regeneration of human tumor antigen-specific T cells from iPSCs derived from mature CD8(+) T cells. Cell Stem Cell. 2013;12:31–6.

    Article  CAS  PubMed  Google Scholar 

  97. Sachamitr P, Hackett S, Fairchild PJ. Induced pluripotent stem cells: challenges and opportunities for cancer immunotherapy. Front Immunol. 2014;5:176.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Themeli M, Kloss CC, Ciriello G, Fedorov VD, Perna F, Gonen M, et al. Generation of tumor targeted human T lymphocytes from induced pluripotent stem cells for cancer therapy. Nat Biotechnol. 2013;31:928–33.

    Article  CAS  PubMed  Google Scholar 

  99. Copier J, Bodman-Smith M, Dalgleish A. Current status and future applications of cellular therapies for cancer. Immunotherapy. 2011;3:507–16.

    Article  CAS  PubMed  Google Scholar 

  100. Cheng M, Chen Y, Xiao W, Sun R, Tian Z. NK cell-based immunotherapy for malignant diseases. Cell Mol Immunol. 2013;10:230–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Jung Y, Bauer G, Nolta JA. Concise review: induced pluripotent stem cell-derived mesenchymal stem cells: progress toward safe clinical products. Stem Cells. 2012;30:42–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kim N, Cho SG. Clinical applications of mesenchymal stem cells. Korean J Intern Med. 2013;28:387–402.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Binato R, de Souza FT, Lazzarotto-Silva C, Du Rocher B, Mencalha A, Pizzatti L, Bouzas LF, Abdelhay A. Stability of human mesenchymal stem cells during in vitro culture: considerations for cell therapy. Cell Prolif. 2013;46:10–22.

    Article  CAS  PubMed  Google Scholar 

  104. Zar JH. Biostatistical analysis. 5th ed. Upper Saddle River, NJ: Prentice Hall; 2010.

    Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Essam M. Abdelalim for the invitation to participate in this book.

Conflict of Interests

The authors declare no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa de Souza Fernandez Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de Souza Fernandez, T., Mencalha, A.L., de Souza Fernandez, C. (2016). Clinical Applications of Induced Pluripotent Stem Cells in Cancer. In: Abdelalim, E. (eds) Recent Advances in Stem Cells. Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-33270-3_7

Download citation

Publish with us

Policies and ethics