Skip to main content

Lung Stem Cells and Their Use for Patient Care: Are We There Yet?

  • Chapter
  • First Online:

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Recent advances in our understanding of stem cell populations in the lung, their behavior in response to injury, and the pathways controlling their proliferation and differentiation have boosted the hope for using stem cells to provide novel therapeutic options to patients with debilitating lung diseases in the near future. In this chapter, we will summarize the current knowledge of lung epithelial stem cell populations, then we will discuss the ongoing research and trials to exploit this knowledge to design stem cell-based therapies using direct cell transfer or through transplantation of bioengineered lung tissues.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hogan BL. Morphogenesis. Cell. 1999;96(2):225–33.

    Article  CAS  PubMed  Google Scholar 

  2. Iber D, Menshykau D. The control of branching morphogenesis. Open Biol. 2013;3(9):130088.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hogan BL, Barkauskas CE, Chapman HA, Epstein JA, Jain R, Hsia CC, et al. Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function. Cell Stem Cell. 2014;15(2):123–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lau AN, Goodwin M, Kim CF, Weiss DJ. Stem cells and regenerative medicine in lung biology and diseases. Mol Ther. 2012;20(6):1116–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mercer RR, Russell ML, Roggli VL, Crapo JD. Cell number and distribution in human and rat airways. Am J Respir Cell Mol Biol. 1994;10(6):613–24.

    Article  CAS  PubMed  Google Scholar 

  6. Hong KU, Reynolds SD, Giangreco A, Hurley CM, Stripp BR. Clara cell secretory protein-expressing cells of the airway neuroepithelial body microenvironment include a label-retaining subset and are critical for epithelial renewal after progenitor cell depletion. Am J Respir Cell Mol Biol. 2001;24(6):671–81.

    Article  CAS  PubMed  Google Scholar 

  7. Borthwick DW, Shahbazian M, Krantz QT, Dorin JR, Randell SH. Evidence for stem-cell niches in the tracheal epithelium. Am J Respir Cell Mol Biol. 2001;24(6):662–70.

    Article  CAS  PubMed  Google Scholar 

  8. Li L, Clevers H. Coexistence of quiescent and active adult stem cells in mammals. Science. 2010;327(5965):542–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rawlins EL, Hogan BL. Epithelial stem cells of the lung: privileged few or opportunities for many? Development. 2006;133(13):2455–65.

    Article  CAS  PubMed  Google Scholar 

  10. Hegab AE, Ha VL, Gilbert JL, Zhang KX, Malkoski SP, Chon AT, et al. Novel stem/progenitor cell population from murine tracheal submucosal gland ducts with multipotent regenerative potential. Stem Cells. 2011;29(8):1283–93.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hegab AE, Ha VL, Darmawan DO, Gilbert JL, Ooi AT, Attiga YS, et al. Isolation and in vitro characterization of basal and submucosal gland duct stem/progenitor cells from human proximal airways. Stem Cells Transl Med. 2012;1(10):719–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rock JR, Onaitis MW, Rawlins EL, Lu Y, Clark CP, Xue Y. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci U S A. 2009;106(31):12771–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Engelhardt JF, Schlossberg H, Yankaskas JR, Dudus L. Progenitor cells of the adult human airway involved in submucosal gland development. Development. 1995;121(7):2031–46.

    CAS  PubMed  Google Scholar 

  14. Hegab AE, Nickerson DW, Ha VL, Darmawan DO, Gomperts BN. Repair and regeneration of tracheal surface epithelium and submucosal glands in a mouse model of hypoxic-ischemic injury. Respirology. 2012;17(7):1101–13.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Watson JK, Rulands S, Wilkinson AC, Wuidart A, Ousset M, Van Keymeulen A, et al. Clonal dynamics reveal two distinct populations of basal cells in slow-turnover airway epithelium. Cell Rep. 2015;12(1):90–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tata PR, Mou H, Pardo-Saganta A, Zhao R, Prabhu M, Law BM, et al. Dedifferentiation of committed epithelial cells into stem cells in vivo. Nature. 2013;503(7475):218–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Rock JR, Gao X, Xue Y, Randell SH, Kong YY, Hogan BL. Notch-dependent differentiation of adult airway basal stem cells. Cell Stem Cell. 2011;8(6):639–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pan JH, Adair-Kirk TL, Patel AC, Huang T, Yozamp NS, Xu J, et al. Myb permits multilineage airway epithelial cell differentiation. Stem Cells. 2014;32(12):3245–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hegab AE, Ha VL, Attiga YS, Nickerson DW, Gomperts BN. Isolation of basal cells and submucosal gland duct cells from mouse trachea. J Vis Exp. 2012;14(67):e3731.

    Google Scholar 

  20. Rawlins EL, Okubo T, Xue Y, Brass DM, Auten RL, Hasegawa H, et al. The role of Scgb1a1+ Clara cells in the long-term maintenance and repair of lung airway, but not alveolar, epithelium. Cell Stem Cell. 2009;4(6):525–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Giangreco A, Reynolds SD, Stripp BR. Terminal bronchioles harbor a unique airway stem cell population that localizes to the bronchoalveolar duct junction. Am J Pathol. 2002;161(1):173–82.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Guha A, Vasconcelos M, Cai Y, Yoneda M, Hinds A, Qian J, et al. Neuroepithelial body microenvironment is a niche for a distinct subset of Clara-like precursors in the developing airways. Proc Natl Acad Sci U S A. 2012;109(31):12592–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zheng D, Limmon GV, Yin L, Leung NH, Yu H, Chow VT, et al. Regeneration of alveolar type I and II cells from Scgb1a1-expressing cells following severe pulmonary damage induced by bleomycin and influenza. PLoS One. 2012;7(10):e48451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Adamson IY, Bowden DH. The type 2 cell as progenitor of alveolar epithelial regeneration. A cytodynamic study in mice after exposure to oxygen. Lab Invest. 1974;30(1):35–42.

    CAS  PubMed  Google Scholar 

  25. Mason RJ, Williams MC. Type II alveolar cell. Defender of the alveolus. Am Rev Respir Dis. 1977;115(6 Pt 2):81–91.

    CAS  PubMed  Google Scholar 

  26. Barkauskas CE, Cronce MJ, Rackley CR, Bowie EJ, Keene DR, Stripp BR, et al. Type 2 alveolar cells are stem cells in adult lung. J Clin Invest. 2013;123(7):3025–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Desai TJ, Brownfield DG, Krasnow MA. Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature. 2014;507(7491):190–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Logan CY, Desai TJ. Keeping it together: pulmonary alveoli are maintained by a hierarchy of cellular programs. Bioessays. 2015;37(9):1028–37.

    Article  PubMed  Google Scholar 

  29. Jain R, Barkauskas CE, Takeda N, Bowie EJ, Aghajanian H, Wang Q. Plasticity of Hopx(+) type I alveolar cells to regenerate type II cells in the lung. Nat Commun. 2015;6:6727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kumar PA, Hu Y, Yamamoto Y, Hoe NB, Wei TS, Mu D, et al. Distal airway stem cells yield alveoli in vitro and during lung regeneration following H1N1 influenza infection. Cell. 2011;147(3):525–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chapman HA, Li X, Alexander JP, Brumwell A, Lorizio W, Tan K, et al. Integrin α6β4 identifies an adult distal lung epithelial population with regenerative potential in mice. J Clin Invest. 2011;121(7):2855–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zuo W, Zhang T, Wu DZ, Guan SP, Liew AA, Yamamoto Y, et al. p63(+)Krt5(+) distal airway stem cells are essential for lung regeneration. Nature. 2015;517(7536):616–20.

    Article  CAS  PubMed  Google Scholar 

  33. Vaughan AE, Brumwell AN, Xi Y, Gotts JE, Brownfield DG, Treutlein B. Lineage-negative progenitors mobilize to regenerate lung epithelium after major injury. Nature. 2015;517(7536):621–5.

    Article  CAS  PubMed  Google Scholar 

  34. Rehberg S, Maybauer MO, Enkhbaatar P, Maybauer DM, Yamamoto Y, Traber DL. Pathophysiology, management and treatment of smoke inhalation injury. Expert Rev Respir Med. 2009;3(3):283–97.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Weiss DJ, Bertoncello I, Borok Z, Kim C, Panoskaltsis-Mortari A, Reynolds S, et al. Stem cells and cell therapies in lung biology and lung diseases. Proc Am Thorac Soc. 2011;8:223–72.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chang JC, Summer R, Sun X, Fitzsimmons K, Fine A. Evidence that bone marrow cells do not contribute to the alveolar epithelium. Am J Respir Cell Mol Biol. 2005;33:335–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kotton DN, Fabian AJ, Mulligan RC. Failure of bone marrow to reconstitute lung epithelium. Am J Respir Cell Mol Biol. 2005;33:328–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Loi R, Beckett T, Goncz KK, Suratt BT, Weiss DJ. Limited restoration of cystic fibrosis lung epithelium in vivo with adult bone marrow-derived cells. Am J Respir Crit Care Med. 2006;173:171–9.

    Article  CAS  PubMed  Google Scholar 

  39. Sueblinvong V, Loi R, Eisenhauer PL, Bernstein IM, Suratt BT, Spees JL, et al. Derivation of lung epithelium from human cord blood-derived mesenchymal stem cells. Am J Respir Crit Care Med. 2008;177:701–11.

    Article  CAS  PubMed  Google Scholar 

  40. Takahashi M, Nakamura T, Toba T, Kajiwara N, Kato H, Shimizu Y. Transplantation of endothelial progenitor cells into the lung to alleviate pulmonary hypertension in dogs. Tissue Eng. 2004;10:771–9.

    Article  PubMed  Google Scholar 

  41. Yoshida H, Kitaichi T, Urata M, Kurobe H, Kanbara T, Motoki T, et al. Syngeneic bone marrow mononuclear cells improve pulmonary arterial hypertension through vascular endothelial growth factor upregulation. Ann Thorac Surg. 2009;88:418–24.

    Article  PubMed  Google Scholar 

  42. Zhu YG, Hao Q, Monsel A, Feng XM, Lee JW. Adult stem cells for acute lung injury: remaining questions and concerns. Respirology. 2013;18(5):744–56.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hayes M, Curley G, Ansari B, Laffey JG. Clinical review: stem cell therapies for acute lung injury/acute respiratory distress syndrome—hope or hype? Crit Care. 2012;16(2):205.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Longmire TA, Ikonomou L, Hawkins F, Christodoulou C, Cao Y, Jean JC. Efficient derivation of purified lung and thyroid progenitors from embryonic stem cells. Cell Stem Cell. 2012;10(4):398–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Huang SX, Islam MN, O’Neill J, Hu Z, Yang YG, Chen YW, et al. Efficient generation of lung and airway epithelial cells from human pluripotent stem cells. Nat Biotechnol. 2014;32(1):84–91.

    Article  CAS  PubMed  Google Scholar 

  46. Gomperts BN. Induction of multiciliated cells from induced pluripotent stem cells. Proc Natl Acad Sci U S A. 2014;111(17):6120–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ikonomou L, Kotton DN. Derivation of endodermal progenitors from pluripotent stem cells. J Cell Physiol. 2015;230(2):246–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang D, Morales JE, Calame DG, Alcorn JL, Wetsel RA. Transplantation of human embryonic stem cell-derived alveolar epithelial type II cells abrogates acute lung injury in mice. Mol Ther. 2010;18(3):625–34.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Banerjee ER, Laflamme MA, Papayannopoulou T, Kahn M, Murry CE, Henderson Jr WR. Human embryonic stem cells differentiated to lung lineage-specific cells ameliorate pulmonary fibrosis in a xenograft transplant mouse model. PLoS One. 2012;7(3):e33165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Weiss DJ. Current status of stem cells and regenerative medicine in lung biology and diseases. Stem Cells. 2014;32(1):16–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Murakawa T, Nakajima J, Motomura N, Murakami A, Takamoto S. Successful allotransplantation of cryopreserved tracheal grafts with preservation of the pars membranacea in nonhuman primates. J Thorac Cardiovasc Surg. 2002;123(1):153–60.

    Article  PubMed  Google Scholar 

  52. Suzuki T, Kobayashi K, Tada Y, Suzuki Y, Wada I, Nakamura T, et al. Regeneration of the trachea using a bioengineered scaffold with adipose-derived stem cells. Ann Otol Rhinol Laryngol. 2008;117(6):453–63.

    Article  PubMed  Google Scholar 

  53. Komura M, Komura H, Kanamori Y, Tanaka Y, Suzuki K, Sugiyama M, et al. An animal model study for tissue-engineered trachea fabricated from a biodegradable scaffold using chondrocytes to augment repair of tracheal stenosis. J Pediatr Surg. 2008;43(12):2141–6.

    Article  PubMed  Google Scholar 

  54. Imaizumi M, Nomoto Y, Sato Y, Sugino T, Miyake M, Wada I. Evaluation of the use of induced pluripotent stem cells (iPSCs) for the regeneration of tracheal cartilage. Cell Transplant. 2013;22(2):341–53.

    Article  PubMed  Google Scholar 

  55. Kobayashi K, Suzuki T, Nomoto Y, Tada Y, Miyake M, Hazama A, et al. A tissue-engineered trachea derived from a framed collagen scaffold, gingival fibroblasts and adipose-derived stem cells. Biomaterials. 2010;31(18):4855–63.

    Article  CAS  PubMed  Google Scholar 

  56. Haag JC, Jungebluth P, Macchiarini P. Tracheal replacement for primary tracheal cancer. Curr Opin Otolaryngol Head Neck Surg. 2013;21(2):171–7.

    Article  PubMed  Google Scholar 

  57. Kotsimbos T, Williams TJ, Anderson GP. Update on lung transplantation: programmes, patients and prospects. Eur Respir Rev. 2012;21(126):271–305.

    Article  PubMed  Google Scholar 

  58. Calle EA, Ghaedi M, Sundaram S, Sivarapatna A, Tseng MK, Niklason LE. Strategies for whole lung tissue engineering. IEEE Trans Biomed Eng. 2014;61(5):1482–96.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. J Biol Eng. 2015;9:4.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Horváth L, Umehara Y, Jud C, Blank F, Petri-Fink A, Rothen-Rutishauser B. Engineering an in vitro air-blood barrier by 3D bioprinting. Sci Rep. 2015;5:7974.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed E. Hegab .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hegab, A.E., Betsuyaku, T. (2016). Lung Stem Cells and Their Use for Patient Care: Are We There Yet?. In: Abdelalim, E. (eds) Recent Advances in Stem Cells. Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-33270-3_12

Download citation

Publish with us

Policies and ethics