General Terminology Induction in OWL

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9557)

Abstract

An ontology is a machine-processable representation of knowledge about a domain of interest.

References

  1. 1.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)MATHGoogle Scholar
  2. 2.
    Baader, F., Ganter, B., Sertkaya, B., Sattler, U.: Completing description logic knowledge bases using formal concept analysis. In: Proceedings of the 20th International Joint Conference on Artifical Intelligence, IJCAI 2007, pp. 230–235. Morgan Kaufmann Publishers Inc., San Francisco (2007)Google Scholar
  3. 3.
    Baader, F., Sertkaya, B., Turhan, A.Y.: Computing the least common subsumer w.r.t. a background terminology. J. Appl. Logic 5(3), 392–420 (2007)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Conklin, D., Witten, I.H.: Complexity-based induction. Mach. Learn. 16(3), 203–225 (1994)MATHGoogle Scholar
  5. 5.
    Fanizzi, N., d’Amato, C., Esposito, F.: DL-FOIL Concept Learning in Description Logics. In: Železný, F., Lavrač, N. (eds.) ILP 2008. LNCS (LNAI), vol. 5194, pp. 107–121. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Ganter, B., Wille, R.: Formal Concept Analysis, vol. 284. Springer, Berlin (1999)CrossRefMATHGoogle Scholar
  7. 7.
    Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontologies: theory and practice. J. Artif. Intell. Res. 31, 273–318 (2008)MathSciNetMATHGoogle Scholar
  8. 8.
    Grau, B.C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P., Sattler, U.: OWL 2: the next step for OWL. Web Semant. 6(4), 309–322 (2008)CrossRefGoogle Scholar
  9. 9.
    Haase, P., Stojanovic, L.: Consistent evolution of OWL ontologies. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 182–197. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Lehmann, J., Auer, S., Bühmann, L., Tramp, S.: Class expression learning for ontology engineering. Web Semant. 9(1), 71–81 (2011)CrossRefGoogle Scholar
  11. 11.
    Lehmann, J., Hitzler, P.: Concept learning in description logics using refinement operators. Mach. Learn. 78(1–2), 203–250 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Lehmann, J., Völker, J. (eds.): Perspectives On Ontology Learning, Studies in the Semantic Web, vol. 18. IOS Press, Amsterdam (2014)Google Scholar
  13. 13.
    Muggleton, S.: Inductive logic programming. New Gener. Comput. 8(4), 295–318 (1991)CrossRefMATHGoogle Scholar
  14. 14.
    Sazonau, V., Sattler, U., Brown, G.: General terminology induction in OWL. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 533–550. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  15. 15.
    Tsarkov, D., Horrocks, I.: FACT++ description logic reasoner: system description. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 292–297. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Vitányi, P.M., Li, M.: Minimum description length induction, bayesianism, and kolmogorov complexity. IEEE Trans. Inf. Theor. 46(2), 446–464 (2000)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Völker, J., Niepert, M.: Statistical Schema Induction. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 124–138. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.University of ManchesterManchesterUK

Personalised recommendations