Skip to main content

A Multi-Modal CMOS Sensor Platform Towards Personalized DNA Sequencing

  • Chapter
  • First Online:
Smart Sensors and Systems

Abstract

Precision medicine requires scalable bio-instrument for a personalized DNA sequencing, which can be label-free, cost-efficient, and high-throughput. This chapter mainly presents three kinds of CMOS-based label-free sensors, including: (1) a high-sensitivity ion-sensitive field-effect transistor (ISFET) sensor with pH-to-time-to-voltage conversion (pH-TVC); (2) a dual-mode sensor with image and chemical modes for high accuracy; and (3) a THz metamaterial sensor with electrical resonance detection. The developed CMOS multi-modal sensor platform can show a scaled solution for future personalized DNA sequencing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rothberg JM, Hinz W, Rearick TM et al (2011) An integrated semiconductor device enabling non-optical genome sequencing. Nature 475(7356):348–352

    Article  Google Scholar 

  2. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74(12):5463–5467

    Article  Google Scholar 

  3. Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11(1):31–46

    Article  Google Scholar 

  4. Toumazou C, Shepherd LM, Reed SC et al (2013) Simultaneous DNA amplification and detection using a pH-sensing semiconductor system. Nat Methods 10(7):641–646

    Article  Google Scholar 

  5. Jiang Y, Liu X, Huang X et al (2015) A 201 mV/pH, 375 fps and 512 × 576 CMOS ISFET sensor in 65 nm CMOS technology. In: 2015 IEEE custom integrated circuits conference (CICC), San Jose, CA, September, pp 1–4

    Google Scholar 

  6. Huang X, Wang F, Guo J et al (2014) A 64 × 64 1200 fps CMOS ion-image sensor with suppressed fixed-pattern-noise for accurate high-throughput DNA sequencing. In: 2014 symposium on VLSI circuits digest of technical papers, Honolulu, HI, June, pp 1–2

    Google Scholar 

  7. Huang X, Yu H, Liu X et al (2015) A dual-mode large-arrayed CMOS ISFET sensor for accurate and high-throughput pH sensing in biomedical diagnosis. IEEE Trans Biomed Eng 62(9):2224–2233

    Article  Google Scholar 

  8. Kumar S, Tao C, Chien M et al (2012) PEG-labeled nucleotides and nanopore detection for single molecule DNA sequencing by synthesis. Sci Rep 2(684):1–8

    Google Scholar 

  9. Bergveld P (2003) Thirty years of ISFETOLOGY: what happened in the past 30 years and what may happen in the next 30 years. Sens Actuators B Chem 88(1):1–20

    Article  Google Scholar 

  10. Bausells J et al (1999) Ion-sensitive field effect transistors fabricated in a commercial CMOS technology. Sens Actuators B Chem 57:56–62

    Article  Google Scholar 

  11. Milgrew M, Cumming D (2008) A proton camera array technology for direct extracellular ion imaging. In: Proceedings of the 2008. IEEE International Symposium on Industrial Electronics, Cambridge, July, pp 2051–2055

    Google Scholar 

  12. Rothberg JM et al (2010) Methods and apparatus for measuring analytes. U.S. Patent 20100301398 A1, Dec 2, 2010

    Google Scholar 

  13. Liu Y et al (2011) An extended CMOS ISFET model incorporating the physical design geometry and the effects on performance and offset variation. IEEE Trans Electron Devices 58(12):4414–4422

    Article  Google Scholar 

  14. Al-Ahdal A, Toumazou C (2012) High gain ISFET based vMOS chemical inverter. Sens Actuators B 171:110–117

    Article  Google Scholar 

  15. Premanode B, Silawan N, Toumazou C (2007) Drift reduction in ion-sensitive FETs using correlated double sampling. Electron Lett 43:1–2

    Article  Google Scholar 

  16. Milgrew M, Cumming D (2008) Matching the transconductance characteristics of CMOS ISFET arrays by removing trapped charge. IEEE Trans Electron Devices 55(4):1074–1079

    Article  Google Scholar 

  17. Hu Y, Georgiou P (2014) A robust ISFET pH-measuring front-end for chemical reaction monitoring. IEEE Trans Biomed Circuits Syst 8(2):177–185

    Article  Google Scholar 

  18. Georgiou P, Toumazou C (2009) ISFET characteristics in CMOS and their application to weak inversion operation. Sens Actuators B Chem 143(1):211–217

    Article  Google Scholar 

  19. Park JK et al (2014) SOI dual-gate ISFET with variable oxide capacitance and channel thickness. Solid-State Electron 97:2–7

    Article  Google Scholar 

  20. Huang X et al (2014) A contact-imaging based microfluidic cytometer with machine-learning for single-frame super-resolution processing. PLoS One 9(8), e104539

    Article  Google Scholar 

  21. Ji H et al (2007) Contact imaging: simulation and experiment. IEEE Trans Circuits Syst I Regul Pap 54(8):1698–1710

    Article  Google Scholar 

  22. Fossum ER, Hondongwa DB (2014) A review of the pinned photodiode for CCD and CMOS image sensors. IEEE J Electron Devices Soc 2(3):33–43

    Article  Google Scholar 

  23. Xilinx Virtex-6 XC6VLX240T FPGA (2014) [On-line] Available: http://www.xilinx.com/products/boards-and-kits/EK-V6-ML605-G.htm

  24. Nemeth B et al (2012) High-resolution real-time ion-camera system using a CMOS-based chemical sensor array for proton imaging. Sens Actuators B, Chem 171–172:747–752

    Article  Google Scholar 

  25. Chan WP et al (2010) An integrated ISFETs instrumentation system in standard CMOS technology. IEEE J Solid State Circuits 45:1923–1934

    Article  Google Scholar 

  26. Manickam A et al (2012) A fully-electronic charge-based DNA sequencing CMOS biochip. In: 2012 Symposium on VLSI Circuits (VLSIC), Honolulu, HI, June, pp 126–127

    Google Scholar 

  27. Bolivar PH, Nagel M et al (2004) Label-free THz sensing of genetic sequences: towards ‘THz biochips’. Philos Transact A Math Phys Eng Sci 362(1815):323–333

    Article  Google Scholar 

  28. Huang X, Jiang Y et al (2015) A CMOS THz-sensing system towards label-free DNA sequencing. In: IEEE international conference on ASIC (ASICON), Nov 2015 (Invited Special Session), Sichuan, China, November, pp 1–4

    Google Scholar 

  29. Brucherseifer M, Nagel M, Bolivar PH, Kurz H, Bosserhoff A, Buttner R (2000) Label-free probing of the binding state of DNA by time-domain terahertz sensing. Appl Phys Lett 77(24):4049–4051

    Google Scholar 

  30. Nagel M, Bolivar PH, Brucherseifer M, Kurz H (2002) Integrated THz technology for label-free genetic diagnostics. Appl Phys Lett 80(1):154–156

    Google Scholar 

  31. Zheng N et al (2013) Metamaterial sensor platforms for Terahertz DNA sensing. In: 2013 13th IEEE International Conference on Nanotechnology, Beijing, China, August, pp 315–320

    Google Scholar 

  32. Chernev AL et al (2015) DNA detection by THz pumping. Semiconductors 49(7):944–948

    Google Scholar 

  33. Cao C, Zhang J, Wen X et al (2013) Metamaterials-based label-free nanosensor for conformation and affinity biosensing. ACS Nano 7(9):7583–7591

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jiang, Y., Liu, X., Huang, X., Shang, Y., Yan, M., Yu, H. (2017). A Multi-Modal CMOS Sensor Platform Towards Personalized DNA Sequencing. In: Kyung, CM., Yasuura, H., Liu, Y., Lin, YL. (eds) Smart Sensors and Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-33201-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33201-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33200-0

  • Online ISBN: 978-3-319-33201-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics