Skip to main content

Influences of Arthropod Vectors on Encephalitic Arboviruses

  • Chapter
  • First Online:
Neurotropic Viral Infections

Abstract

This chapter describes viruses that can cause encephalitic symptoms in vertebrate hosts and whose transmission cycle involves arthropod vectors, for example, species of mosquito or tick. The dependence of these viruses on their arthropod vectors and the complexity of the interactions between these viruses and the vector can have a number of consequences. The biology and life cycle of these vectors, can, for example, influence virus evolution and the genetic diversity of the pathogen.

When compared to other routes of infection, the involvement of the arthropod can influence different aspects of the disease including pathogenesis, duration, and severity of disease. These effects result from the complexity of the relationship between the vector and the vertebrate host. The basis for these effects is the need for the vectors to obtain a blood meal from the host, a process that involves the inoculation of arthropod saliva into the skin and circulatory system of the host. The saliva of hematophagous arthropods is extremely complex with often more than 100 different components. These components, primarily proteins, have evolved to combat vertebrate hemostasis responses. Saliva therefore contains substances with vasodilatory, antiplatelet, and anti-coagulating properties. Whilst exposure of the host to the foreign protein can result in a rapid influx of macrophages and other cells to the feeding site, which in itself can influence virus establishment, an additional function of saliva can also be of critical importance.

The saliva of arthropods can have immunomodulatory activity. With respect to hard ticks that may feed on the host for many days, this is very important because alteration of the immune responses can effectively cloak the feeding tick from responses that could lead to a failure of successful blood acquisition and perhaps tick death. With respect to the virus being transmitted, it is these vector-directed changes in the vertebrate immune responses that can impact establishment at the feeding site, spread to other tissues and diseases progression. Additionally, the success of virus transmission from vertebrate to vector can be influenced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alekseev AN, Chunikhin SP (1990) Exchange of tick-borne encephalitis virus between Ixodidae simultaneously feeding on animals with subthreshold levels of Viremia. Med Parazitol Parazit Boleznei 2:48–50 [in Russian]

    Google Scholar 

  • Alekseev AN, Chunikhin SP, Rukhkyan MY, Stefutkina LE (1991) Possible role of Ixodidae salivary gland substrate as an adjuvant enhancing arbovirus transmission. Med Parazitol Parazit Boleznei 1:28–31 [in Russian]

    Google Scholar 

  • Anderson JF, Main AJ, Andreadis TG, Wikel SK, Vossbrinck CR (2003) Transstadial transfer of West Nile virus by three species of Ixodid ticks (Acar: Ixodidae). J Med Entomol 40:528–533

    Article  PubMed  Google Scholar 

  • Arca B, Lombardo F, de Lara Capurro M, della Torre A, Dimopoulos G, James AA, Coluzzi M (1999) Trapping cDNAs encoding secreted proteins from the salivary glands of the malaria vector Anopheles gambiae. Proc Natl Acad Sci U S A 96:1516–1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arca B, Lombardo F, Lanfrancotti A, Spanos L, Veneri M, Louis C, Coluzzi M (2002) A cluster of four D7-related genes is expressed in the salivary glands of the African malaria vector Anopheles gambiae. Insect Mol Biol 11:47–55

    Article  CAS  PubMed  Google Scholar 

  • Arca B, Lombardo F, Valenzuela JG, Francischetti IMB, Marinotti O, Coluzzi M, Ribeiro JMC (2005) An updated catalogue of salivary gland transcripts in the adult female mosquito, Anopheles gambiae. J Exp Biol 208:3971–3986

    Article  CAS  PubMed  Google Scholar 

  • Benda R (1958) The common tick, Ixodes ricinus, L., as a reservoir and vector of tick borne encephalitis. I. Survival of the virus (strain B3) during the development of the tick under laboratory conditions. J Hyg Epidemiol Microbiol Immunol 2:314–330

    Google Scholar 

  • Billinglsey PF, Baird J, Mitchell JA, Drakely C (2006) Immune reactions between mosquitoes and their hosts. Parasite Immunol 28:143–153

    Article  Google Scholar 

  • Bishop DHL, Beaty BJ (1988) Molecular and biochemical studies of the evolution, infection and transmission of insect bunyavirus. In: Anderson RM, Thresh JM (eds) The epidemiology and ecology of infectious disease agents. Royal Society, London, pp 137–483

    Google Scholar 

  • Black WC IV, Kondratieff BC (2004) Chapter 2: Evolution of arthropod disease vectors. In: Marquardt WC, Kondratieff B, Moore CG, Freier J, Hagedorn HH, Black W III, James AA, Hemingway J, Higgs S (eds) The biology of disease vectors. Elsevier Academic, San Diego, pp 9–23

    Google Scholar 

  • Blattner RJ, Heyes FM (1944) Blood-sucking vectors of encephalitis: experimental transmission of St. Louis encephalitis (Hubbard strain) to white Swiss mice by the American dog tick, Dermacentor variabilis Say. J Exp Med 79:439–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brossard M, Wikel SK (2004) Tick immunobiology. Parasitology 129:S161–S176

    Article  CAS  PubMed  Google Scholar 

  • Bunning ML, Bowen RA, Cropp CB, Sullivan KG, Davis BS, Komar N, Godsey MS, Baker D, Hettler DL, Holmes DA, Biggerstaff BJ, Mitchell CJ (2002) Experimental infection of horses with West Nile virus. Emerg Infect Dis 8:380–386

    Article  PubMed  PubMed Central  Google Scholar 

  • Burgdorfer W (1960) Colorado tick fever. II. The behavior of Colorado tick fever virus in rodents. J Infect Dis 107:384–388

    Article  CAS  PubMed  Google Scholar 

  • Burgdorfer W, Varma MGR (1967) Trans-stadial and transovarial development of disease agents in arthropods. Annu Rev Entomol 12:347–376

    Article  CAS  PubMed  Google Scholar 

  • Calisher CH (1994) Medically important arboviruses of the United States and Canada. Clin Microbiol Rev 7:89–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calvo E, Ribeiro JMC (2006) A novel secreted endonuclease from Culex quinquefasciatus salivary glands. J Exp Biol 209:2651–2659

    Article  CAS  PubMed  Google Scholar 

  • Calvo E, Andersen J, Francischetti IM, del Capurro M, deBianchi AG, James AA, Ribeiro JMC, Mirinotti O (2004) The transcriptome of adult female Anopheles darlingi salivary glands. Insect Mol Biol 13:73–88

    Article  CAS  PubMed  Google Scholar 

  • Calvo E, Mans BJ, Andersen JF, Ribeiro JMC (2006a) Function and evolution of a mosquito salivary gland protein family. J Biol Chem 281:1935–1942

    Article  CAS  PubMed  Google Scholar 

  • Calvo E, Pham VM, Lombardo F, Arca B, Ribeiro JM (2006b) The sialotranscriptome of adult male Anopheles gambiae mosquitoes. Insect Biochem Mol Biol 36:570–575

    Article  CAS  PubMed  Google Scholar 

  • Cavassani KA, Aliberti JC, Dias AR, Silva JS, Ferreira BR (2005) Tick saliva inhibits differentiation, maturation and function of murine bone-marrow-derived dendritic cells. Immunology 114:235–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Champagne DE (2004) Antihemostatic strategies of blood-feeding arthropods. Curr Drug Targets Cardiovasc Haematol Disord 4:375–396

    Article  CAS  PubMed  Google Scholar 

  • Champagne DE, Smartt CT, Ribeiro JMC, James AA (1995) The salivary gland-specific apyrase of the mosquito Aedes aegypti is a member of the 5′-nucleotide family. Proc Natl Acad Sci U S A 92:694–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chumakov MP (1944) Studies on virus encephalitides. 6. Transmission of tick-borne encephalitis to the offspring in Ixodidae ticks and the question of natural reservoirs of this infection. Med Parazitol Parazitar Bolezni 6:38–40

    Google Scholar 

  • Chumakov MP, Petrova SP, Sondak VA (1945) A study of ultravirus encephalitis. VII. Artificial adaptation of the virus of ticks and Japanese encephalitis to various species of ticks of the family Ixodidae. Med Parasitol Moscow 14:18–24

    CAS  Google Scholar 

  • Cook S, Holmes EC (2006) A multigenic analysis of the phylogenetic relationships among flaviviruses (family: Flaviviridae). Arch Virol 151:309–325

    Article  CAS  PubMed  Google Scholar 

  • Cross ML, Cupp EW, Enriquez FJ (1994) Differential modulation of murine cellular immune responses by salivary gland extract of Aedes aegypti. Am J Trop Med Hyg 51:690–696

    CAS  PubMed  Google Scholar 

  • De Lambellarie X, Crochu S, Billoir F, Nevts J, de Micco P, Holmes EC, Gould EA (2002) Genome sequence analysis of Tamana bat virus and its relationship with the genus Flavivirus. J Gen Virol 83:2443–2454

    Article  Google Scholar 

  • Diziji A, Kurtenbach K (1995) Clethrionomys glareollus, but not Apodemus flavicollis, acquires resistance to Ixodes ricinus L., the main European vector of Borrelia burgdorferi. Parasite Immunol 17:177–183

    Article  Google Scholar 

  • Dumina AL (1958) Experimental study of the extent to which the tick Ixodes persulcatus becomes infected with Russian spring-summer encephalitis virus as a result of sucking the blood of immune animals. Probl Virol 3:166–170

    Google Scholar 

  • Edwards JF, Higgs S, Beaty BJ (1998) Mosquito feeding-induced enhancement of Cache Valley virus (Bunyaviridae) infection in mice. J Med Entomol 35:261–265

    Article  CAS  PubMed  Google Scholar 

  • Fraser CH, Schiff DW (1962) Colorado tick fever encephalitis. Report of a case. Pediatrics 29:187–190

    CAS  PubMed  Google Scholar 

  • Gaunt MW, Sall AA, Lambellarie X, Falconar AK, Dzhivanian TI, Gould EA (2001) Phylogenetic relationships of flaviviruses correlate with their epidemiology, disease association and biogeography. J Gen Virol 82:1867–1876

    Article  CAS  PubMed  Google Scholar 

  • Gern L, Rais O (1996) Efficient transmission of Borrelia burgdorferi between cofeeding Ixodes ricinus ticks (Acari: Ixodidae). J Med Entomol 33:189–192

    Article  CAS  PubMed  Google Scholar 

  • Gholam BI, Puksa AS, Provias JP (1999) Powassan encephalitis: a case report with neuropathology and literature review. Can Med Assoc J 161:1419–1422

    CAS  Google Scholar 

  • Gordon SW, Linthicum KJ, Moulton JR (1993) Transmission of Crimean-Congo hemorrhagic fever virus in two species of Hyalomma ticks from infected adults to cofeeding immature forms. Am J Trop Med Hyg 48:576–580

    CAS  PubMed  Google Scholar 

  • Gould EA, de Lambellerie X, Zanotto PMA, Holmes EC (2001) Evolution, epidemiology and dispersal of flaviviruses by molecular phylogenetics. Adv Virus Res 57:71–103

    Article  CAS  PubMed  Google Scholar 

  • Gould EA, de Lamballerie X, Zanotto PM, Holmes EC (2003) Origins, evolution, and vector/host coadaptations within the genus Flavivirus. Adv Virus Res 59:277–314

    Article  CAS  PubMed  Google Scholar 

  • Granwehr BP, Lillibridge KM, Higgs S, Mason PW, Aronson JF, Campbell GA, Barrett ADT (2004) West Nile virus. Where are we now? Lancet Infect Dis 4:547–556

    Article  PubMed  Google Scholar 

  • Grard G, Lemasson JJ, Sylla M, Dubot A, Cook S, Molez JF, Pourrut X, Charrel R, Gonzalez JP, Munderloh U, Holmes EC, de Lamballerie X (2006) Ngoye virus: a novel evolutionary lineage within the genus Flavivirus. J Gen Virol 87:3273–3277

    Article  CAS  PubMed  Google Scholar 

  • Grard G, Moureau G, Charrel RN, Lemasson JJ, Gonzalez JP, Gallian P, Gritsun TS, Holmes EC, Gould EA, de Lamballerie X (2007) Genetic characterization of tick-borne flaviviruses: new insights into evolution, pathogenetic determinants and taxonomy. Virology 36:80–92

    Article  CAS  Google Scholar 

  • Gritsun T, Holmes EC, Gould EA (1995) Analysis of Flavivirus envelope proteins reveals variable domains that reflect their antigenicity and may determine their pathogenesis. Virus Res 35:307–321

    Article  CAS  PubMed  Google Scholar 

  • Gritsun TS, Nuttall PA, Gould EA (2003) Tick-borne flaviviruses. Adv Virus Res 61:317–371

    Article  CAS  PubMed  Google Scholar 

  • Hardy JL (1988) Susceptibility and resistance of vector mosquitoes. In: Monath TP (ed) The arboviruses: epidemiology and ecology, vol 1. CRC, Boca Raton, pp 87–126

    Google Scholar 

  • Hardy JL, Houk EJ, Kramer LD, Reeves WC (1983) Intrinsic factors affecting vector competence of mosquitoes for arboviruses. Annu Rev Entomol 28:229–262

    Article  CAS  PubMed  Google Scholar 

  • Heinze DM, Aronson J, Carmical R, Thangamani S (2012) Early immunologic events at the tick-host interface. PLoS One 7(10):e47301, PMID:23077588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermance M, Thangamani S (2015) Tick saliva enhances Powassan virus transmission to the host influencing its dissemination and the course of disease. J Virol 89(15):7852–7860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higgs S (2004) How do mosquito vectors live with their viruses? In: Gillespie SH, Smith GL, Osbourn A (eds) Microbe-vector interactions in vector-borne diseases. Cambridge University Press, Cambridge, pp 103–137

    Chapter  Google Scholar 

  • Higgs S (2006) A novel method of West Nile virus transmission. Contagion 3:95–97

    Google Scholar 

  • Higgs S, Beaty BJ (2004) Chapter 14: Natural cycles of vector-borne pathogens. In: Marquardt WC, Kondratieff B, Moore CG, Freier J, Hagedorn HH, Black W III, James AA, Hemingway J, Higgs S (eds) The biology of disease vectors. Elsevier Academic, San Diego, pp 167–185

    Google Scholar 

  • Higgs S, Schneider BS, Vanlandingham DL, Klingler K, Gould EA (2005) Nonviremic transmission of West Nile virus. Proc Natl Acad Sci U S A 102:8871–8874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubálek Z, Halouzka J (1999) West Nile fever—a reemerging mosquito-borne viral disease in Europe. Emerg Infect Dis 5:643–650

    Article  PubMed  PubMed Central  Google Scholar 

  • James AA (1994) Molecular and biochemical analyses of the salivary glands of vector mosquitoes. Bull Inst Pasteur 92:133–150

    CAS  Google Scholar 

  • James AA, Blackmer K, Marinotti O, Ghosn CR, Racioppi JV (1991) Isolation and characterization of the gene expressing the major salivary gland protein of the femeale mosquito, Aedes aegypti. Mol Biochem Parasitol 44:245–253

    Article  CAS  PubMed  Google Scholar 

  • Jenkins GM, Pagel M, Gould EA, Zanotto PM, Holmes EC (2001) Evolution of base composition and codon usage bias in the genus Flavivirus. J Mol Evol 52:383–390

    CAS  PubMed  Google Scholar 

  • Jones LD, Nuttall PA (1989a) The effect of virus-immune hosts on Thogoto virus infection of the tick, Rhipicephalus appendiculatus. Virus Res 14:129–140

    Article  CAS  PubMed  Google Scholar 

  • Jones LD, Nuttall PA (1989b) Non-viremic transmission of Thogoto virus. Influence of time and distance. Tran R Soc Trop Med Hyg 83:712–714

    Article  CAS  Google Scholar 

  • Jones LD, Nuttall PA (1990) The effect of host resistance to tick infestation on the transmission of Thogoto virus by ticks. J Gen Virol 71:1039–1043

    Article  PubMed  Google Scholar 

  • Jones LD, Davies CR, Steele GM, Nuttall PA (1987) A novel mode of arbovirus transmission involving a non-viremic host. Science 237:775–777

    Article  CAS  PubMed  Google Scholar 

  • Jones LD, Hodgson E, Nuttall PA (1990) Characterization of tick salivary gland factor(s) that enhance Thogoto virus transmission. Arch Virol Suppl 1: 227–234

    Google Scholar 

  • Jones LD, Hodgson E, Williams T, Higgs S, Nuttall PA (1992a) Saliva activated transmission (SAT) of Thogoto virus: relationship with vector potential of different haematophagous arthropods. Med Vet Entomol 6:261–265

    Article  CAS  PubMed  Google Scholar 

  • Jones LD, Matthewson M, Nuttall PA (1992b) Saliva-activated transmission (SAT) of Thogoto virus: dynamics of SAT factor activity in the salivary glands of Rhipicephalus appendiculatus, Amblyomma variegatum, and Boophilus microplus ticks. Exp Appl Acarol 13:241–248

    Article  CAS  PubMed  Google Scholar 

  • Jones LD, Gaunt M, Hails RS, Laurenson K, Hudson PJ, Reid H, Henbest P, Gould EA (1997) Transmission of louping ill virus between infected and uninfected ticks feeding on mountain hares. Med Vet Entomol 11:172–176

    Article  CAS  PubMed  Google Scholar 

  • Kerlin RL, Hughes S (1992) Enzymes in saliva from four parasitic arthropods. Med Vet Entomol 6:121–126

    Article  CAS  PubMed  Google Scholar 

  • Kislenko GS, Chunikhin SP, Rasnitsyn SP, Kurenkov VB, Izotov VK (1982) Reproduction of Powassan and West Nile viruses in Aedes aegypti mosquitoes and their cell culture. Med Parazitol Mosk 51:13–15

    CAS  PubMed  Google Scholar 

  • Kondratenko VF, Blagoveschenskaya NM, Butenko AM, Vyshnivetskaya LK, Zarubina LV, Milutin VN, Kuchin VV, Novikova EM, Rabinovich VD, Shevchenko SF, Chumakov MP (1970) Results of virological investigation of ixodid ticks in Crimean hemorrhagic fever focus in Rostov Oblast. Mater. 3. Oblast. Nauchn. Prakt. Konf. (Rostov-on-Don), pp 29–35

    Google Scholar 

  • Korenberg EI, Pchelkina AA (1984) Tickborne encephalitis virus titers in engorged adult Ixodes persulcatus ticks. Parazitologiia 18:123–127

    CAS  PubMed  Google Scholar 

  • Kotsyfakis M, Anderson JF, Francischetti IM, Ribeiro JM (2005) Ixodes scapularis can suppress host cysteine protease activity in the sites of blood feeding. In: Abstract 547, 54th annual meeting of the American Society for Tropical Medicine and Hygiene, 11–15 Dec

    Google Scholar 

  • Kramer LD, Ebel GD (2003) Dynamics of flavivirus infection in mosquitoes. In: Chambers TJ, Monath TP (eds) The flaviviruses: pathogenesis and immunity, vol 60, Advances in virus research. Academic, New York, pp 187–232

    Google Scholar 

  • Kuno G, Chang GJ, Tsuchiya KR, Karabatsos N, Cropp CB (1998) Phylogeny of the genus Flavivirus. J Virol 72:73–83

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuno G, Artsob H, Karabatsos N, Tsuchiya KR, Chang GJJ (2001) Genomic sequence of deer tick virus and phylogeny of Powassan-related viruses of North America. Am J Trop Med Hyg 65:671–676

    CAS  PubMed  Google Scholar 

  • Labuda M, Danielova V, Jones LD, Nuttall PA (1993a) Amplification of tick-borne encephalitis virus infection during co-feeding of ticks. Med Vet Entomol 7:339–342

    Article  CAS  PubMed  Google Scholar 

  • Labuda M, Jones LD, Williams T, Danielova V, Nuttall PA (1993b) Efficient transmission of tick-borne encephalitis virus between co-feeding ticks. J Med Entomol 30:295–299

    Article  CAS  PubMed  Google Scholar 

  • Labuda M, Jones LD, Williams T, Nuttall PA (1993c) Enhancement of tick-borne encephalitis virus transmission by salivary gland extracts. Med Vet Entomol 7:193–196

    Article  CAS  PubMed  Google Scholar 

  • Labuda M, Nuttall PA, Koozuch O, Eleckova E, Williams T, Zuffova E, Sabo A (1993d) Non-viremic transmission of tick-borne encephalitis virus: a mechanism for arbovirus survival in nature. Experientia 49:802–805

    Article  CAS  PubMed  Google Scholar 

  • Labuda M, Austyn JM, Zuffova E, Kozuch O, Fuchsberger N, Lysy J, Nuttall PA (1996) Importance of localized skin infection in tick-borne encephalitis virus transmission. Virology 219:357–366

    Article  CAS  PubMed  Google Scholar 

  • Labuda M, Kozuch O, Zuffova E, Eleckova E, Hails RS, Nuttall PA (1997a) Tick-borne encephalitis virus transmitted between ticks cofeeding on specific immune natural hosts. Virology 235:138–143

    Article  CAS  PubMed  Google Scholar 

  • Labuda M, Alves MJ, Eleckova E, Kozuch O, Filipe AR (1997b) Transmission of tick-borne bunyaviruses by cofeeding ixodid ticks. Acta Virol 41:325–328

    CAS  PubMed  Google Scholar 

  • Labuda M, Trimnell AR, Lickova M, Kazimirova M, Davies GM, Lissina O, Hails RS, Nuttall PA (2006) An antivector vaccine protects against a lethal vector-borne pathogen. PLoS Pathog 2(4):e27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lanfrancotti A, Lombardo F, Santolamazza F, Veneri M, Castrignano T, Coluzzi M, Arca B (2002) Novel cDNAs encoding salivary proteins from the malaria vector Anopheles gambiae. FEBS Lett 517:67–71

    Article  CAS  PubMed  Google Scholar 

  • Lawrie CH, Uzcategui NY, Gould EA, Nuttall PA (2004) Ixodid and argasid tick species and West Nile. Emerg Infect Dis 10:653–657

    Article  PubMed  PubMed Central  Google Scholar 

  • Leake CJ (1984) Transovarial transmission of arboviruses by mosquitoes. In: Mayo CA, Harrap KA (eds) Vectors in virus biology. Academic, London, pp 63–91

    Google Scholar 

  • Leake CJ (1992) Arbovirus-mosquito interactions and vector specificity. Parasitol Today 8:123–128

    Article  CAS  PubMed  Google Scholar 

  • Leonova GN (1997) Tick-borne encephalitis in Primorski Region. Dalnauka, Vladivostok, p 187

    Google Scholar 

  • Lillibridge KM, Parsons R, Randle Y, Travassos da Rosa APA, Guzman H, Siirin M et al (2004) The 2002 introduction of West Nile virus into Harris County, Texas, an area historically endemic for St. Louis encephalitis. Am J Trop Med Hyg 70:676–681

    PubMed  Google Scholar 

  • Limesand KH, Higgs S, Pearson LD, Beaty BJ (2000) Potentiation of vesicular stomatitis New Jersey virus infection mice by mosquito saliva. Parasite Immunol 22:461–467

    Article  CAS  PubMed  Google Scholar 

  • Limesand KH, Higgs S, Pearson LD, Beaty BJ (2003) The effect of mosquito salivary gland treatment on vesicular stomatitis New Jersey virus replication and interferon α/β expression in vitro. J Med Entomol 40:199–205

    Article  CAS  PubMed  Google Scholar 

  • Lord CC, Day JF (2001) Simulation studies of St. Louis encephalitis virus in south Florida. Vector Borne Zoonotic Dis 1:299–315

    Article  CAS  PubMed  Google Scholar 

  • Lord CC, Tabachnick WJ (2002) Influence of nonsystemic transmission on the epidemiology of insect borne arboviruses: a case study of vesicular stomatitis epidemiology in the Western Uniited States. J Med Entomol 39:417–426

    Article  PubMed  Google Scholar 

  • Lord CC, Higgs S, Tabachnick WJ (2005) The impact of non-systemic transmission on arbovirus epidemiology. In: Abstract 821, 54th annual meeting of the American Society for Tropical Medicine and Hygiene, 11–15 Dec

    Google Scholar 

  • Malkova D, Holubova J, Kolman JM, Marhoul Z, Hanzal F, Kulkova H, Markvart K, Simkova L (1980) Antibodies against some arboviruses in persons with various neuropathies. Acta Virol 24:298

    CAS  PubMed  Google Scholar 

  • Marfin AA, Campbell GL (2005) Colorado tick fever and related Coltivirus infections. In: Goodman JL, Dennis DT, Sonenshine DE (eds) Tick-borne diseases of humans. ASM Press, Washington, pp 143–149

    Chapter  Google Scholar 

  • Marin MS, Zanotto PM, Gritsun TS, Gould EA (1995) Phylogeny of TYU, SRE, and CFA virus: different evolutionary rates in the genus Flavivirus. Virology 206:1133–1139

    Article  CAS  PubMed  Google Scholar 

  • Mather TN, Ginsberg HS (1994) Vector-host-pathogen relationships: transmission dynamics of tick-borne infections. In: Sonenshine DE, Mather TN (eds) Ecological dynamics of tick-borne zoonoses. Oxford University Press, Oxford, pp 68–90

    Google Scholar 

  • McElroy KL, Tsetsarkin KA, Vanlandingham DL, Higgs S (2005) Characterization of yellow fever virus-mosquito interactions using an infectious clone of the wild-type Asibi virus. J Gen Virol 86:1747–1751

    Article  CAS  PubMed  Google Scholar 

  • McElroy KL, Tsetsarkin K, Vanlandingham DL, Higgs S (2006a) Role of the yellow fever virus structural protein genes in viral dissemination from the Aedes aegypti mosquito midgut. J Gen Virol 87:2993–3001

    Article  CAS  PubMed  Google Scholar 

  • McElroy KL, Tsetsarkin K, Vanlandingham DL, Higgs S (2006b) Manipulation of the yellow fever virus non-structural genes 2A and 4B and the 3′non-coding region to evaluate genetic determinants of viral dissemination from the Aedes aegypti midgut. Am J Trop Med Hyg 75:1158–1164

    CAS  PubMed  Google Scholar 

  • McGee CE, Schneider BS, Girard YA, Vanlandingham DL, Higgs S (2007) Nonviremic transmission of West Nile virus: evaluation of the effects of space, time and mosquito species. Am J Trop Med Hyg 76:424–430

    PubMed  Google Scholar 

  • Mead DG, Ramberg FB, Besselsen DG, Mare CJ (2000) Transmission of vesicular stomatitis virus from infected to noninfected black flies co-feeding on nonviremic deer mice. Science 287:485–487

    Article  CAS  PubMed  Google Scholar 

  • Mellinck JJ, van Zeben MS (1976) Age related differences of saliva composition in Aedes aegypti. Mosq News 36:247–250

    Google Scholar 

  • Nascimento EP, dos Santos Malafronte R, Marinotti O (2000) Salivary gland proteins of the mosquito Culex quinquefasciatus. Arch Insect Biochem Physiol 43:9–15

    Article  CAS  PubMed  Google Scholar 

  • Nuttall PA, Jones LD (1991) Non-viraemic tick-born virus transmission: mechanism and significance. In: Dusbábek F, Bukva V (eds) Modern acarology, vol 2. Academia Prague, The Hague, pp 3–6

    Google Scholar 

  • Nuttall PA, Labuda M (2004) Tick-host interactions: saliva activated transmission. Parasitology 129 Suppl: S177–S189

    Google Scholar 

  • Nuttall PA, Labuda M (2005) Tick-borne encephalitis. In: Goodman JL, Dennis DT, Sonenshine DE (eds) Tick-borne diseases of human. ASM Press, Washington, pp 150–163

    Chapter  Google Scholar 

  • Nuttall PA, Jones LD, Davies CR (1991) The role of arthropod vectors in arbovirus evolution. Adv Dis Vector Res 8:15–45

    Article  Google Scholar 

  • Nuttall PA, Jones LD, Labuda M, Kaufman WR (1994) Adaptations of arboviruses to ticks. J Med Entomol 31:1–9

    Article  CAS  PubMed  Google Scholar 

  • Nuttall PA, Trimnell AR, Kazimirova M, Labuda M (2006) Exposed and concealed antigens as vaccine targets for controlling ticks and tick-borne diseases. Parasite Immunol 28:155–163

    Article  CAS  PubMed  Google Scholar 

  • Osorio JE, Godsey MS, Defoliart GR, Yuill TM (1996) La Crosse viremias in white-tailed deer and chipmunks exposed by injection or mosquito bite. Am J Trop Med Hyg 54:338–342

    CAS  PubMed  Google Scholar 

  • Patrican LA (1997) Acquisitian of Lyme disease spirochaetes by cofeeding Ixodes scapularis ticks. Am J Trop Med Hyg 57:589–593

    CAS  PubMed  Google Scholar 

  • Poehling HM (1979) Distribution of specific proteins in the salivary gland lobes of Culicidae and their relation to age and blood sucking. J Insect Physiol 25:3–8

    Article  CAS  Google Scholar 

  • Porterfield JS (1980) Antigenic characteristics and classification of Togaviridae. In: Schlesinger RW (ed) The Togaviruses. Biology, structure, replication. Academic, New York, pp 13–46

    Google Scholar 

  • Pretzmann G, Loew J, Radda A (1963) Untersuchen in einem Naturherd der Fruhsummer-Meningoencephalitis (FSME) in Niederosterreich 3. Mitteilung: Versuch einer Gesamtdarstellung des Zyklus der FSME in Naturherd Zentr. Bacteriol Parasitenk Aby I Orig 190:299–312

    CAS  Google Scholar 

  • Racioppi JV, Spielman A (1987) Secretory proteins from the salivary glands of adult Aedes aegypti mosquitoes. Insect Biochem 17:503–511

    Article  CAS  Google Scholar 

  • Randolph SE (2000) Ticks and tick-borne disease systems in space from space. Adv Parasitol 47:217–243

    Article  CAS  PubMed  Google Scholar 

  • Randolph SE, Gern L, Nuttall PA (1996) Co-feeding ticks: epidemiological significance for tick-borne pathogen transmission. Parasitol Today 12:472–479

    Article  CAS  PubMed  Google Scholar 

  • Randolph SE, Miklisova D, Lysy J, Rogers DJ, Labuda M (1999) Incidence from coincidence: patterns of tick infestations on rodents facilitate transmission of tick-borne encephalitis virus. Parasitology 118:177–186

    Article  PubMed  Google Scholar 

  • Randolph SE, Green RM, Peacey MF, Rogers DJ (2000) Seasonal synchrony: the key to tick-borne encephalitis foci identified by satellite data. Parasitology 121:15–23

    Article  PubMed  Google Scholar 

  • Rehse-Kupper BJ, Casals J, Rehse E, Ackermann R (1976) Eyach—an arthropod-borne virus related to Colorado tick fever virus in the Federal Republic of Germany. Acta Virol 20:339–342

    CAS  PubMed  Google Scholar 

  • Reisen WK, Fang Y, Martinez V (2007) Is nonviremic transmission of West Nile virus by Culex mosquitoes (Diptera: Culicidae) nonviremic? J Med Entomol 44:299–302

    Article  PubMed  Google Scholar 

  • Ribeiro JMC (1987) Role of saliva in blood-feeding by arthropods. Annu Rev Entomol 32:463–478

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro JMC (1989) Vector saliva and its role in parasite transmission. Exp Parasitol 69:104–106

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro JMC (1992) Characterization of a vasodilator from the salivary glands of the yellow fever mosquito Aedes aegypti. J Exp Biol 165:61–71

    CAS  PubMed  Google Scholar 

  • Ribeiro JMC (1995) How ticks make a living. Parasitol Today 11:91–93

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro JMC (2000) Blood-feeding in mosquitoes: probing time and salivary gland anti-haemostatic activities in representatives of three genera (Aedes, Anopheles, Culex). Med Vet Entomol 14:142–148

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro JMC, Francishetti IMB (2003) Role of arthropod saliva in blood feeding: sialome and post-sialome perspectives. Annu Rev Entomol 48:73–88

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro JMC, Nussenzveig RH (1993) The salivary catechol oxidase/peroxidase activities of the mosquito Anopheles albimanus. J Exp Biol 179:273–287

    CAS  PubMed  Google Scholar 

  • Ribeiro JMC, Spielman A (1986) Ixodes dammini: salivary anaphylatoxin inactivating activity. Exp Parasitol 62:292–297

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro JMC, Valenzuela JG (1999) Purification and cloning of the salivary peroxidase/catechol oxidase of the mosquito Anopheles albimanus. J Exp Biol 202:809–816

    CAS  PubMed  Google Scholar 

  • Ribeiro JMC, Makoul G, Levine J, Robinson D, Spielman A (1985) Antihemostatic, antiinflammatory and immunosuppressive properties of the saliva of a tick, Ixodes dammini. J Exp Med 161:332–344

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro JMC, Weis JJ, Telford SR III (1990) Saliva of the tick Ixodes dammini inhibits neutrophils functions. Exp Parasitol 70:382–388

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro JMC, Nussenzveig RH, Tortorella G (1994) Salivary vasodilators of Aedes triseriatus and Anopheles gambiae (Diptera: Culicidae). J Med Entomol 31:747–753

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro JMC, Charlab R, Valenzuela JG (2001) The salivary adenosine deaminase activity of the mosquitoes Culex quinquefasciatus and Aedes aegypti. J Exp Biol 204:2001–2010

    CAS  PubMed  Google Scholar 

  • Ribeiro JMC, Charlab R, Pham VM, Garfield M, Valenzuela JG (2004) An insight into the salivary transcriptome and proteome of the adult mosquito Culex pipiens quinquefasciatus. Insect Biochem Mol Biol 34:543–563

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro JM, Alarcon-Chaidez F, Francischetti IM, Mans BJ, Mather TN, Valenzuela JG, Wikel SK (2006) An annotated catalog of salivary gland transcripts from Ixodes scapularis ticks. Insect Biochem Mol Biol 36:111–129

    Article  CAS  PubMed  Google Scholar 

  • Risi GF (2006) Nonviremic transmission of West Nile virus: a novel observation with significant potential implications. Contagion 3:98–100

    Google Scholar 

  • Roseboom LE, Burgdorfer W (1959) Development of Colorado tick fever virus in the Rocky Mountain wood tick, Dermacentor andersoni. Am J Hyg 69:138–145

    Google Scholar 

  • Santos RM, Hermance M, Gelman B, Thangamani S (Manuscript in Preparation) Neuropathogenesis of Powassan virus infection

    Google Scholar 

  • Schneider BS, Soong L, Zeidner NS, Higgs S (2004) Aedes aegypti salivary gland extracts modulate anti-viral and TH1/TH2 cytokine responses to sindbis virus infection. Viral Immunol 17:565–573

    Article  CAS  PubMed  Google Scholar 

  • Schneider BS, Soong L, Girard YA, Campbell G, Mason P, Higgs S (2006) Potentiation of West Nile encephalitis by mosquito feeding. Viral Immunol 19:74–82

    Article  CAS  PubMed  Google Scholar 

  • Shiu SY, Ayres MD, Gould EA (1991) Genomic sequence of the structural proteins of louping ill virus: comparative analysis with tick-borne encephalitis virus. Virology 180:411–415

    Article  CAS  PubMed  Google Scholar 

  • Silver HK, Meiklejohn G, Kempe CH (1961) Colorado tick fever. Am J Dis Child 101:56–62

    Google Scholar 

  • Singh KRP et al (1971) Transmission of Kyasanur Forest virus by soft tick, Argas persicus (Ixodidae: Argasidae). Ind J Med Res 59:213–218

    CAS  Google Scholar 

  • Smith MB, Blattner RJ, Heyes FM (1946) St. Louis encephalitis: infection of chicken mites, Dermanyssus gallinae, by feeding on chickens with viremia; transovarian passage of virus into the second generation. J Exp Med 84:1–6

    Google Scholar 

  • Smorodintsev AA, Dubov AV (1996) Tick-borne encephalitis and vaccino-prophylaxis. Medicine, Moscow, p 230

    Google Scholar 

  • Sonenshine DE (1991) Biology of ticks, vol 1. Oxford University Press, Oxford, 447 pp

    Google Scholar 

  • Spruance SL, Bailey A (1973) Colorado tick fever. A review of 115 laboratory confirmed cases. Arch Intern Med 131:288–293

    Article  CAS  PubMed  Google Scholar 

  • Stark KR, James AA (1996) Salivary gland anticoagulants in culicine and anopheline mosquitoes (Diptera: Culicidae). J Med Entomol 33:645–650

    Article  CAS  PubMed  Google Scholar 

  • Steen NA, Barker SC, Alewood PF (2006) Proteins in the saliva of the Ixodida (ticks): pharmacological features and biological significance. Toxicon 47:1–20

    Article  CAS  PubMed  Google Scholar 

  • Stockman S (1918) Louping-ill. J Comp Pathol 31:137–193

    Article  Google Scholar 

  • Styer LM, Bernard KA, Kramer LD (2006) Enhanced early West Nile virus infection in young chickens infected by mosquito bite: effect of viral dose. Am J Trop Med Hyg 75:337–345

    PubMed  Google Scholar 

  • Suwan N, Wilkinson MC, Crampton JM, Bates PA (2002) Expression of D7 and D7-related proteins in the salivary glands of the human malaria mosquito, Anopheles stephensi. Insect Mol Biol 11:223–232

    Google Scholar 

  • Syverton JT, Berry GP (1941) Hereditary transmission of the western type of equine encephalomyelitis in the wood tick, Dermacentor andersoni Stiles. J Exp Med 73:507–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Titus RG, Bishop JV, Mejia JS (2006) The immunomodulatory factors of arthropod saliva and the potential for these factors to serve as vaccine targets to prevent pathogen transmission. Parasite Immunol 28:131–141

    CAS  PubMed  Google Scholar 

  • Tonetti N, Voordouw MJ, Durand J, Monnier S (2015) Genetic variation in transmission success of the Lyme borreliosis pathogen Borrelia afzelii. Ticks Tick Borne Dis 6:334–343

    Article  PubMed  Google Scholar 

  • Tsai TF (1991) Arboviral infections in the United States. Infect Dis Clin North Am 5:73–102

    CAS  PubMed  Google Scholar 

  • Turell MJ (1989) Horizontal and vertical transmission of viruses by insect and tick vectors. In: Monath TP (ed) The arboviruses: epidemiology and ecology. CRC, Boca Raton, pp 127–152

    Google Scholar 

  • Valenzuela JG (2002) High-throughput approaches to study salivary gland proteins and genes from vectors of disease. Insect Biochem Mol Biol 32:1199–1209

    Article  CAS  PubMed  Google Scholar 

  • Valenzuela JG (2004) Blood-feeding arthropod salivary glands and saliva. In: Marquardt WC, Kondratieff B, Moore CG, Freier J, Hagedorn HH, Black W III, James AA, Hemingway J, Higgs S (eds) The biology of disease vectors. Elsevier Academic, San Diego, pp 377–386

    Google Scholar 

  • Valenzuela JG, Charlab R, Gonzalez EC, Miranda-Santos IKF, Marinotti O, Francischetti IM, Ribeiro JMC (2002a) The D7 family of salivary proteins in blood sucking diptera. Insect Mol Biol 11:149–155

    Article  CAS  PubMed  Google Scholar 

  • Valenzuela JG, Pham VM, Grafield MK, Francishetti IMB, Ribeiro JMC (2002b) Toward a description of the sialome of the adult female mosquito Aedes aegypti. Insect Biochem Mol Biol 32:1101–1122

    Article  CAS  PubMed  Google Scholar 

  • Vanlandingham DL, Schneider BS, Klingler K, Fair J, Beasley D, Huang JM, Hamilton P, Higgs S (2004) Real-time RT-PCR quantification of West Nile virus transmitted by Culex pipiens quinquefasciatus. Am J Trop Med Hyg 71:120–123

    CAS  PubMed  Google Scholar 

  • Vanlandingham DL, Hong C, Tsetsarkin K, McElroy KL, Powers AM, Lehane M, Higgs S (2005) Differential infectivities of o’nyong-nyong and chikungunya viruses in Anopheles gambiae and Aedes aegypti mosquitoes. Am J Trop Med Hyg 72:616–621

    PubMed  Google Scholar 

  • Vanlandingham DL, Tsetsarkin K, Klingler KA, Hong C, McElroy KL, Lehane MJ, Higgs S (2006) Determinants of vector specificity of o’nyong nyong and chikungunya viruses in Anopheles and Aedes mosquitoes. Am J Trop Med Hyg 74:663–669

    PubMed  Google Scholar 

  • Varma MGR, Smith CEG (1962) Studies of Langat virus (TO 21) in Haemophysalis spinigera Neumann. In: Libikova H (ed) Biology of viruses of the tick-borne encephalitis complex (Proceedings of a symposium on the biology of viruses of the tick-borne encephalitis complex, Smolenice, 1960. Academic, New York, pp 397–400

    Google Scholar 

  • Venugopal K, Gritsun T, Lashkevitch VA, Gould EA (1994) Analysis of the structural protein gene sequence shows Kyasanur Forest disease virus as a distinct member in the tick-borne encephalitis virus serocomplex. J Gen Virol 75:227–232

    Article  CAS  PubMed  Google Scholar 

  • Voorouw M (2015) Co-feeding transmission in Lyme disease pathogens. Parasitology 142:290–302

    Article  Google Scholar 

  • Wanasen N, Nussenzveig RH, Champagne DE, Soong L, Higgs S (2004) Differential modulation of murine host immune response by salivary gland extracts from the mosquitoes Aedes aegypti and Culex quinquefasciatus. Med Vet Entomol 18:191–199

    Article  CAS  PubMed  Google Scholar 

  • Wasserman HA, Singh S, Champagne DE (2004) Saliva of the yellow fever mosquito, Aedes aegypti, modulates murine lymphocyte function. Parasite Immunol 26:295–306

    Article  CAS  PubMed  Google Scholar 

  • Watts DM, Puntawatana S, DeFoliart GR, Yuill TM, Thompson WH (1973) Transovarial transmission of LaCrosse virus (California encephalitis group) in the mosquito Aedes triseriatus. Science 182:1140–1143

    Article  CAS  PubMed  Google Scholar 

  • Watts DM, Thompson WH, Yuill TM, DeFoliart GR, Hanson RP (1974) Overwintering of La Crosse virus in Aedes triseriatus. Am J Trop Med Hyg 23:694–700

    CAS  PubMed  Google Scholar 

  • Weaver SC, Powers AM, Brault AC, Barrett ADT (1999) Molecular epidemiological studies of veterinary arboviral encephalitides. Vet J 157:123–138

    Article  CAS  PubMed  Google Scholar 

  • Wikel SW (1996) Immunology of the tick-host interface. In: Wikel SK (ed) The immunology of host-ectoparasitic arthropod relationships. CAB International, Wallingford, pp 204–231

    Google Scholar 

  • Wikel SK, Ramachandra RN, Bergman DK (1996) Arthropod modulation of host immune responses. In: Wikel SK (ed) Immunology of host-ectoparasitic arthropod relationships. CAB International, Wallingford, pp 107–130

    Google Scholar 

  • Zanotto PM, Gao GF, Gritsun T, Marin MS, Jiang WR, Venugopal K, Reid HW, Gould EA (1995) An arbovirus cline across the northern hemisphere. Virology 210:152–159

    Article  CAS  PubMed  Google Scholar 

  • Zanotto PM, Gibbs MJ, Gould EA, Holmes EC (1996) A reevaluation of the higher taxonomy of viruses based on RNA polymerases. J Virol 70:6083–6096

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeidner NS, Higgs S, Happ CM, Beaty BJ, Miller BR (1999) Mosquito feeding modulates Th1 and Th2 cytokines in Flavivirus susceptible mice: an effect mimicked by injection of sialokinins, but not demonstrated in Flavivirus resistant mice. Parasite Immunol 21:35–44

    Article  CAS  PubMed  Google Scholar 

  • Zlobin VI, Gorin OZ (1996) Tick-borne encephalitis: etiology, epidemiology and prophylaxis in Siberia. Nauka, Novosibirsk, p 177

    Google Scholar 

Download references

Acknowledgements

The advice and critical reading of several drafts of this chapter in the first edition by Dr. E.A. Gould, and by Dr. D. Watts, and the useful discussions with Dr. R.B. Tesh and N. Vasilakis are most gratefully acknowledged. We thank most sincerely the review and updating of this revision by Dr. Saravanan Thangamani and his provision of his research data in manuscripts in advance of publication. This chapter is dedicated to Dr. Colin Leake, who introduced me to the field of mosquito-borne arboviruses and who died at the age of 64 on 25th April 2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Higgs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Higgs, S., Vanlandingham, D.L. (2016). Influences of Arthropod Vectors on Encephalitic Arboviruses. In: Reiss, C. (eds) Neurotropic Viral Infections. Springer, Cham. https://doi.org/10.1007/978-3-319-33189-8_11

Download citation

Publish with us

Policies and ethics