Skip to main content

Rheological Aspects

  • Chapter
  • First Online:
Book cover Organogels

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

  • 617 Accesses

Abstract

When a solution turns into a gel, namely a solid-like material, determination of its mechanical properties is among the first investigations to be performed. Since the gel contains a large amount of solvent, the science dealing with these systems is rheology which encompasses several properties such as elasticity, viscosity, plasticity, thixotropy, and the like.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Effect similar to the fusion-recrystallization of water under stress.

  2. 2.

    “Monomers” are basic bricks that can be defined as wished.

References

  1. Doi, M.; Edwards, S.F. The Theory of Polymer Dynamics, 1986, Oxford University Press, Oxford

    Google Scholar 

  2. Dammer, C., Maldivi, P., Terech, P., Guenet, J.M.: Rheological Study of a Bicopper Tetracarboxylate/Decalin Jelly. Langmuir 11, 1500 (1995)

    Article  Google Scholar 

  3. McKenna, G.B., Guenet, J.M.: The effects of the solvent type on the concentration dependence of the compression modulus of thermoreversible isotactic polystyrene gels. J. Polym. Sci. Polym. Phys. Ed. 26, 267 (1988)

    Article  ADS  Google Scholar 

  4. Lescanne, M., Colin, A., Mondain-Monval, O., Fages, F., Pozzo, J.L.: Structural Aspects of the Gelation Process Observed with Low Molecular Mass Organogelators. Langmuir 2003, 19 (2013)

    Google Scholar 

  5. Collin, D., Covis, R., Allix, F., Jamart-Grégoire, B., Martinoty, P.: Jamming transition in solutions containing organogelator molecules of amino-acid type: rheological and calorimetry experiments. Soft Matter 9, 2947 (2013)

    Article  ADS  Google Scholar 

  6. Hammersley, J.M.: Percolation processes: lower bounds for the critical probability Ann. Math. Stat. 28, 790 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  7. Stauffer, D.: Gelation in concentrated critically branched polymer solutions. J. Chem. Soc., Faraday Trans. 2 72, 1354 (1976)

    Article  Google Scholar 

  8. de Gennes, P.G.: On a relation between percolation theory and the elasticity of gels. J. Phys. France Lett. 37, 1 (1976)

    Article  ADS  Google Scholar 

  9. Stauffer, D.: Introduction to Percolation Theory. Taylor and Francis, London (1985)

    Book  MATH  Google Scholar 

  10. Daoud, M., Family, F., Jannink, G.: Dilution and polydispersity in branched polymers. J. Phys. France Lett. 45, 199 (1984)

    Article  Google Scholar 

  11. Martin, J., Ackerson, B.J.: Static and dynamic scattering from fractals Phys. Rev. A 31, 1180 (1985)

    Article  Google Scholar 

  12. Adam, M.; Lairez, D. Sol-gel transition, in The Physical Properties of Polymeric Gels, 1996, 84, ed. J. P. Cohen-Addad, Wiley, New York

    Google Scholar 

  13. Guenet, J.M.: Structure versus rheological properties in fibrillary thermoreversible gels from polymers and biopolymers. J. Rheol. 44, 947 (2000)

    Article  ADS  Google Scholar 

  14. Abied, H., Brulet, A., Guenet, J.M.: Physical gels from PVC: molecular structure of pregels and gels by low-angle neutron scattering Colloid Polym. Sci. 268, 403 (1990)

    Google Scholar 

  15. Dasgupta, D., Srinivasan, S.A., Rochas, C., Ajayaghosh, A., Guenet, J.M.: Solvent-mediated Fiber Growth Organog. Soft Matter 7 9311 (2011); Dasgupta, D., Srinivasan, S.A., Rochas, C., Thierry, A., Schröder, A., Ajayaghosh, A., Guenet, J.M.: Insight into the gelation habit of oligo(para-phenylene vinylene) derivatives: effect of end-groups. Soft Matter 7, 2797 (2011)

    Google Scholar 

  16. Jones, J.L., Marques, C.M.J.: Phys. (les Ulis) 51, 1113 (1990)

    Article  Google Scholar 

  17. Guenet, J.M.: Thermoreversible gels from Polymers and Biopolymers. Academic Press, London (1992)

    Google Scholar 

  18. Terech, P., Pasquier, D., Bordas, V., Rossat, C.: Rheological Properties and Structural Correlations in Molecular Organogels. Langmuir 16, 4485 (2000)

    Article  Google Scholar 

  19. Ramzi, M., Rochas, C., Guenet, J.M.: Structure-Properties Relation for Agarose Thermoreversible Gels in Binary Solvents. Macromolecules 31, 6106 (1998)

    Article  ADS  Google Scholar 

  20. Bastide, J., Picot, C., Candau, S.: Influence of pendent chains on the thermodynamic and viscoelastic properties of swollen networks. J. Pol. Sci. B 17, 1441 (1979)

    Google Scholar 

  21. Feng, L., Cavicchi, K.A.: Investigation of the relationships between the thermodynamic phase behavior and gelation behavior of a series of tripodal trisamide compounds. Soft Matter 8, 6483 (2012)

    Article  Google Scholar 

  22. Guenet, J.M.: Polymer-solvent Molecular Compounds. Elsevier, London (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Michel Guenet .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Jean-Michel Guenet

About this chapter

Cite this chapter

Guenet, JM. (2016). Rheological Aspects. In: Organogels. SpringerBriefs in Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-33178-2_6

Download citation

Publish with us

Policies and ethics