Skip to main content

Ceramics, Marbles and Stones in the Light of Neutrons: Characterization by Various Neutron Methods

  • Chapter
  • First Online:
Neutron Methods for Archaeology and Cultural Heritage

Abstract

In this chapter we give a brief overview of neutron based analytical investigations applied to study archaeological ceramics, and different types of stones. Since the vast majority of archaeological objects are made of ceramics and various stones—all are of geological origin—, one of the key objectives of these studies to determine the origin of raw material. This research is called provenance research, and a wide range of neutron based methods are applicable in it. Following a very basic, user-oriented description of the methods, we introduce examples from our everyday practice. The examples are about provenance of prehistoric stone tools, about the sources of 4th–3rd c. B.C. millennium limestone idols found in the South of Portugal, as well as about the characterization of 15th–16th c. A.D. Inka pottery. A very unique application of combined neutron techniques was aimed to determine the inner content of an Eighteenth Dynasty Egyptian sealed vessel. In addition, investigations of samples from different epochs and characterization of marbles are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Section written by Zsolt Kasztovszky and Katalin T. Biró.

  2. 2.

    Section written by Judit Zöldföldi and Zsolt Kasztovszky.

  3. 3.

    Section written by M. Isabel Dias and António Valera.

  4. 4.

    Section written by Veronika Szilágyi.

  5. 5.

    Section written by Emmanuel Abraham, Maryelle Bessou, Zsolt Kasztovszky.

  6. 6.

    Section written by Fabrizio LoCelso and Valerio Benfante.

References

  • Abraham E, Bessou M, Ziéglé A, Hervé M-C, Szentmiklósi L, Kasztovszky Zs, Kis Z, Menu M (2014) Terahertz, X-ray and neutron computed tomography of an eighteenth dynasty Egyptian sealed pottery. Appl Phys A 117:963

    Article  Google Scholar 

  • Agamalian MM, Wignall GD, Triolo R (1997) Optimization of a Bonse-Hart ultra-small-angle neutron scattering facility by elimination of the rocking-curve wings. J Appl Crystallogr 30:345

    Article  Google Scholar 

  • Alconini S (2013) Chungara—Revista de Antropologia Chilena 45:2

    Google Scholar 

  • Allmäe R, Limbo-Simovart J, Heapost L, Verš E (2012) The content of chemical elements in archaeological human bones as a source of nutrition research. Pap Anthropol XXI:27

    Google Scholar 

  • Beltrán J, Loza Azuaga ML, Ontiveros Ortega E, Rodríguez Gutiérrez O, Taylor R (2012) The quarrying and use of Marmora in Baetica. An archaeometry-based research project. Italica 1:220

    Google Scholar 

  • Biró K (2014) Carpathian obsidians: state of art. In: Lithic raw material exploitation and circulation in Préhistory. A comparative perspective in diverse palaeoenvironments, ERAUL, vol 138, p 47

    Google Scholar 

  • Biró KT, Kasztovszky Zs (2009) In: Moreau JF, Auger R, Chabot J, Herzog A (eds) Proceedings of the 36th international symposium on archaeometry. Cahiers d’archéologie du CELAT, n. 25, Série archéométrie n. 7, p 143

    Google Scholar 

  • Biró KT, Regenye J (1995) http://www.ace.hu/szentgal/

  • Blaise J, Cesbron F (1966) Données minéraliques et pétrographiques sur ke gisement de lapis-lazuli de Sare Sang. Bull Soc Fr Minér Cristallogr 89:333

    Google Scholar 

  • Bourdonnec F-X, Delerue S, Dubernet S, Moretto P, Calligaro T, Dran J-C, Poupeau G (2005) PIXE characterization of western mediterranean and anatolian obsidians and Neolithic provenance studies. Nucl Instr Meth B 240:595

    Article  Google Scholar 

  • Buchanan B (1966) Catalogue of ancient near eastern seals in the ashmolean museum I, cylinder seals

    Google Scholar 

  • Cann JR, Renfrew C (1964) The characterization of obsidian and its application to the mediterranean region. Proc Prehist Soc 30:111

    Article  Google Scholar 

  • Casanova M (1992) The sources of lapis lazuli found in Iran. In: Jarrige C (ed) South Asian archaeology 1989, p 49

    Google Scholar 

  • Chakrabarti DK (1978) Human origins studies in India: position, problems and prospects. Man Environ 1–2:51

    Google Scholar 

  • Condarco Castellón C, Gyarmati J (2012) An Reun Anu Etnol 23

    Google Scholar 

  • Cortecci G, Leone G, Pochini A (1994) Stable isotope composition and geothermometry of metamphic rocks from the Apuane Alps, northern Tuscany, Italy. Miner Petrogr Acta 37:51

    Google Scholar 

  • Crandell O (2012) Evaluation of PGAA data for provenance of lithic artifacts. Studia UBB Geologia 57(1):3

    Google Scholar 

  • D’amico C, Innocenti F, Sassi FP (1987) Magmatismo e metamorfismo, Utet, Torino

    Google Scholar 

  • Delmas AB, Casanova M (1990) The lapis lazuli sources in the ancient east. In: Taddei M (ed) South Asian archaeology 1987. Rome, p 493

    Google Scholar 

  • Derakhshani J (1998) Die Arier in den nahöstlichen Quellen des 3. und 2. Jahrtausends v. Chr. Grundzüge der Vor- und Frühgeschichte Irans

    Google Scholar 

  • Di Pisa A, Franceschelli M, Leoni L, Meccheri M (1985) Regional variation of the metamorphic temperatures across the Tuscan id I unit and its implications on the Alpine metamorphism (Apuan Alps, Northern Tuscany). Neues Jb Mineral 151:197

    Google Scholar 

  • Dias MI, Prudêncio MI, Valera AC, Lago M, Gouveia MA (2005) Geoarch Bioarch Stud 3:161

    Google Scholar 

  • Diella V, Spalla MJ, Tunesi A (1992) Contrasted thermo-mechanical evolutions in the Southalpine metamorphic basement of the Orobic Alps (Central Alps, Italy). J Metam Geol 10:203

    Article  Google Scholar 

  • Domínguez Bella S (2009) Huellas de cantería romana de mármol en Almadén de la Plata (Sevilla), un patrimonio a conservar. In: Nogales T, Beltrán J (eds) Marmora Hispana: explotación y uso de los materiales pétreos en la Hispania Romana, Roma, p 377

    Google Scholar 

  • Emmerling A, Petricevic R, Wang P, Scheller H, Beck A, Fricke J (1994) Relationship between optical transparency and nanostructural features of silica aerogels. J Non-Cryst Solids 185:240

    Article  Google Scholar 

  • Faryad S (1999) Metamorphic evolution of the Precambrian South Badakhshan block, based on mineral reactions in metapelites and metabasites associated with whiteschists from Sare Sang (Western Hindu Kush, Afghanistan). Precambrian Res 98(3–4):223

    Article  Google Scholar 

  • Faryad SW (2002) J Petrol 43(4):725

    Article  Google Scholar 

  • Gebhard R, Wagner FE, Albert P, Hess H, Revay Z, Kudejova P, Kleszcz K, Wagner U (in preparation) J Radioanal Nucl Chem

    Google Scholar 

  • Goldschmidth JR, Graff L, Joensu OI (1955) The occurrence of magnesian calcites in nature. Geochim Cosmochim Acta 1:212

    Article  Google Scholar 

  • Gorgoni C, Lazzarini L, Pallante P, Turi B (2002) In: Herrmann JJ, Herz N, Newman R (eds) Interdisciplinary studies on ancient stone. Archetype, London, p 115

    Google Scholar 

  • Grew ES (1988) Nerupine at the Sar-e-Sang, Afghanistan, whiteschist locality: implications for tourmaline-kornerupine distribution in metamorphic rocks. KorAm Mineral 73:345

    Google Scholar 

  • Gyarmati J, Condarco Castellón C (2014) Paria la Viexa. Pre-hispanic settlement patterns in the Paria Basin, Bolivia, and its Inka Provincial Center, Museum of Ethnography, Budapest

    Google Scholar 

  • Herrmann G (1968) Lapis lazuli: the early phases of its trade. Iraq 30:21

    Article  Google Scholar 

  • Hogarth DD, Griffin WL (1978) Lapis Lazuli from Baffin Island, a Precambrian meta-evaporite. Lithos 11:37–60

    Article  Google Scholar 

  • Hurlbut CS (1954) Dana’s manual of mineralogy, 17th edn. John Wiley & Sons Inc, New York

    Google Scholar 

  • Kabaciński J, Sobkowiak-Tabaka I, Kasztovszky Zs, Pietrzak S, Langer JJ, Biró KT, Maróti B (2015) Transcharpatian influences in the Early Neolithic Poland. A case study of Kowalewko and Rudna Wielka Sites. Acta Arch Carp 50:5–32

    Google Scholar 

  • Kasztovszky Zs, Antczak MM, Antczak A, Millan B, Bermúdez J, Sajo-Bohus L (2004) Provenance study of Amerindian pottery figurines with prompt gamma activation analysis. Nukleonika 49(3):107

    Google Scholar 

  • Kasztovszky Zs, Biró KT, Markó A, Dobosi V (2008) Cold neutron prompt gamma activation analysis—a non-destructive method for characterization of high silica content chipped stone tools and raw materials. Archaeometry 50(1):12

    Google Scholar 

  • Kasztovszky Zs, Biró KT, Szilágyi V, Maróti B, Težak-Gregl T, Burić M, Hágó A, Astalos C, Nagy-Korodi I, Berecki S, Hajnal A, Rácz B (2012) Abstracts of the 39th international symposium on archaeometry, Leuven, Belgium, 05.28–06.01

    Google Scholar 

  • Kis Z, Szentmiklósi L, Belgya T (2015) NIPS–NORMA station—a combined facility for neutron-based nondestructive element analysis and imaging at the Budapest Neutron centre. Nucl Instr Meth A 779:116

    Article  Google Scholar 

  • Kostov R (2004) Roots of Bulgarian civilization. In: Academic interdisciplinary conference. Bul-Koreni, Sofia, p 77

    Google Scholar 

  • Kramer SN (1952) Enmerkar and the Lord of Aratta: a Sumerian epic tale of Iraq and Iran. University Museum, University of Pennsylvania

    Google Scholar 

  • Kulke HG (1976) Die Lapislazuli-Lagerstätte Sare Sang (Badakhshan). Afghanistan J 3(2):43

    Google Scholar 

  • Lago M, Duarte C, Valera AC, Albergaria J, Almeida F, Carvalho A (1998) Povoado dos perdigoes (Reguengos de Monsaraz): dados preliminares dos trabalhos arqueologicos realizados em 1997. Rev Port Arqueol Lisboa 1(1):45

    Google Scholar 

  • Lapuente P (1995) Mineralogical, petrographical and geochemical characterization of white marbles from Hispania. In: Maniatis Y, Herz N, Basiakos Y (eds) The study of marble and other stones used in antiquity, vol 151. London

    Google Scholar 

  • Lapuente P, Turi B (1995) Marbles from Portugal: petrographic and isotopic characterization. Sci Technol Cult Herit 4(2):33–42

    Google Scholar 

  • Leoni L, Tamponi M (1991) J Mineral Geochem 4:145

    Google Scholar 

  • Lo Giudice A, Re A, Calusi S, Massi M, Olivero P, Pratesi G, Albonico M, Conz E (2009) Multitechnique characterization of lapis lazuli for provenance study. Anal Bioanal Chem 395:2211

    Google Scholar 

  • Lucido G, Caponetti E, Triolo R (1989) Uso dei frattali in petrologia: esperimenti di scattering di neutroni ai bassi angoli su rocce magmatiche. Miner Petrogr Acta 32:185

    Google Scholar 

  • Lucido G, Caponetti E, Triolo R (1991) Fractality as a working tool for petrology: small-angle neutron scattering experiments to detect critical behaviour of magma. Geol Carpath 42:85

    Google Scholar 

  • Mañas Romero I (2012) Marmora de las canteras de Estremoz, Alconera y Sintra: su uso y difusión. In: García-Entero V (eds) El marmor en Hispania: explotación, uso y difusión en época romana, Madrid, p 331

    Google Scholar 

  • Markó A, Biró KT, Kasztovszky Zs (2003) Szeletian felsitic porphyry: non-destructive analysis of a classical Palaeolithic raw material. Acta Arch Acad Scient Hung 54:297

    Google Scholar 

  • Marschner H (1968) Ca-Mg-distribution in carbonates from the Lower Keuper in NW-Germany. In: Recent developments in carbonate sedimentology in Central Europe. Springer, Heidelberg, pp 128–135

    Google Scholar 

  • Márquez JE, Valera AC, Becker H, Jiménez V, Suàrez J (2011) El complexo arqueológico dos Perdigões (Reguengos de Monsaraz, Portugal). Prospecciones Geofísicas—Campaña 2008–09, Trabajos de Prehistoria, Madrid

    Google Scholar 

  • Martins R, Lopes L (2011) Mármores de Portugal. Rochas Equip 100:32

    Google Scholar 

  • Matos M, Los Incas Arte y Simbolos (Banco de Crédito del Perú, Lima), p 109

    Google Scholar 

  • McLennan SM (1989) In: Lipin BR, McKay G A (eds) Geochemistry and mineralogy of rare earth elements. Reviews in Mineralogy, vol. 21, p 169

    Google Scholar 

  • McLennan SM (2001) Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem Geophys Geosyst 2, 2000GC000109

    Google Scholar 

  • Meyers A (1975) Algunas problemas en la Clasificación del estilo incaico, Puma-punku, vol 8

    Google Scholar 

  • Meyers A (1998) Los Incas en el Ecuador análisis de los restos materiales. Quito, Abia-Yala

    Google Scholar 

  • Molnár GL, Révay Z, Paul RL, Lindstrom RM (1998) Prompt-gamma activation analysis using the ko approach. J Radioanal Nucl Chem 234:21

    Article  Google Scholar 

  • Molnár GL, Révay Z, Belgya T (2002) Wide energy range efficiency calibration method for Ge detectors. Nucl Instr Meth A 489:140

    Article  Google Scholar 

  • Moorey PRS (1994) Ancient mesopotamian materials and industries: the archaeological evidence. Clarendon Press, Oxford

    Google Scholar 

  • Morbidelli P, Tucci P, Imperatori C, Polvorinos A, Preite Martinez M, Azzaro E, Hernandez MJ (2007) Roman quarries of the Iberian peninsula, Eur J Mineral 19(1):125

    Google Scholar 

  • Nance WB, Taylor SR (1976) Rare-earth element patterns and crustal evolution. Geochim Cosmochim Acta 40:1539–1551

    Google Scholar 

  • Oddone M, Márton P, Bigazzi G, Biró KT (1999) Chemical characterisations of Carpathian obsidian sources by instrumental and epithermal neutron activation analysis. J Radioanal Nucl Chem 240(1):147

    Article  Google Scholar 

  • Origlia F, Gliozzo E, Meccheri M, Spangenberg JE, Turbanti Memmi I, Papi E (2011) Mineralogical, petrographic and geochemical characterisation of white and coloured Iberian marbles in the context of the provenancing of some artefacts from Thamusida (Kenitra, Morocco). Eur J Mineral 23:857

    Google Scholar 

  • Pertusanti PC, Raggi G, Ricci CA, Duranti S, Palmeri R (1993) Evoluzione post-collisionale dell’Elba centro-orientale. Mem Soc Geol Ital 49:297

    Google Scholar 

  • Re A, Giudice AL, Angelici D, Calusi S, Giuntini L, Massi M, Pratesi G (2011) Lapis lazuli provenance study by means of micro-PIXE. Nucl Instr Meth B 269:2373–2377. doi:10.1016/j.nimb.2011.02.070

  • Révay Z (2006) Calculation of uncertainties in prompt gamma activation analysis. Nucl Instrum Meth A 564:688

    Article  Google Scholar 

  • Révay Z (2009) Determining elemental composition using prompt gamma activation analysis. Anal Chem 81:6851

    Article  Google Scholar 

  • Révay Z, Belgya T (2004) Principles of PGAA method. In: Molnár GL (ed) Handbook of Prompt Gamma Activation, Analysis with Neutron Beams. Kluwer Academic Publishers, Dordrecht, Boston, New York, pp 1–30

    Chapter  Google Scholar 

  • Révay Z, Belgya T, Ember PP, Molnár GL (2001a) Recent developments in hypermet-PC. J Radioanal Nucl Chem 248:401

    Article  Google Scholar 

  • Révay Z, Molnár GL, Belgya T, Kasztovszky Z, Firestone RB (2001b) A new γ-ray spectrum catalog and library for PGAA. J Radioanal Nucl Chem 248:395

    Article  Google Scholar 

  • Révay Z, Belgya T, Molnár GL (2005) New prompt k0 and partial cross section values measured in the cold neutron beam of Budapest research reactor. J Radioanal Nucl Chem 265:261

    Article  Google Scholar 

  • Rómer F (1867) Első obsidian-Eszközök Magyarországon (in Hungarian) [First obsidian implements in Hungary]. Arch Közl 7:161

    Google Scholar 

  • Rosen LV (1988) Lapis lazuli in geological and in ancient written sources. Partille, Sweden

    Google Scholar 

  • Saragoza F (2008) Revue archéologique de Bordeaux, Tome IC, p 131 (French)

    Google Scholar 

  • Sarianidi VI (1971) Archaeology Magazine 12

    Google Scholar 

  • Schmidt PW (1991) Small-angle scattering studies of disordered, porous and fractal systems. J Appl Crystallogr 24:414

    Article  Google Scholar 

  • Schreyer W, Abraham K (1976) Three-stage metamorphic history of a whiteschist from Sar e Sang, Afghanistan, as part of a former evaporite deposit. Contrib Mineral Petrol 59:111

    Article  Google Scholar 

  • Searight S (2010) Lapis lazuli. In: Pursuit of a celestial stone. East and West Publishing Ltd., London

    Google Scholar 

  • Siletto GB, Spalla MJ, Tunesi A, Nardo M, Soldo L (1990) Structural analysis in the Lario Basement (Central Southern Alps, Italy). Mem Soc Geol Ital 45:93

    Google Scholar 

  • Szabó J (1867) A Tokaj-Hegyalja obsidiánjai (in Hungarian) [Obsidians of the Tokaj Mts]. A Magyarhoni Földtani Társulat Munkálatai (Pest) 3:147–172

    Google Scholar 

  • Szakmány Gy, Kasztovszky Zs, Szilágyi V, Starnini E, Friedel O, Biró KT (2011) Discrimination of prehistoric polished stone tools from Hungary with non-destructive chemical Prompt gamma activation analyses (PGAA). Eur J Mineral 23:883

    Google Scholar 

  • Szentmiklósi L, Belgya T, Révay Z, Kis Z (2010) J Radioanal Nucl Chem 286:501

    Article  Google Scholar 

  • Szilágyi V (2010) History of the Hungarian applied arts after 1945. Ph.D. thesis. Eötvös Loránd University of Budapest, Hungary

    Google Scholar 

  • Szilágyi V, Gyarmati J, Tóth M, Taubald H, Balla M, Kasztovszky Zs, Szakmány Gy (2012) Petro-mineralogy and geochemistry as tools of provenance analysis on archaeological pottery: study of Inka period ceramics from Paria, Bolivia. J South American Earth Sci 36:1

    Article  Google Scholar 

  • Taelman D (2014) Contribution to the use of marble in Central-Lusitania in Roman times: The stone architectural decoration of Ammaia (São Salvador da Aramenha, Portugal), Archivo Espanol de Arqueologia, pp 175–194

    Google Scholar 

  • Taelman D, Elburg M, Smet I, De Paepe P, Luís L, Vanhaecke F, Vermeulen F (2013) J Arch Sci 40(5):2227

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific Publications LTD, Oxford

    Google Scholar 

  • Todd TW (1966) Petrogenetic classification of carbonate rocks. J Sediment Petrol 36(2):317

    Google Scholar 

  • Tschopik MH (1946) Papers of the peabody museum of American archaeology and Ethnology 27(3)

    Google Scholar 

  • Tykot RH (1997) Characterization of the Monte Arci (Sardinia) obsidian sources. J Archaeol Sci 24:467

    Article  Google Scholar 

  • Valera AC (2008) Cosmologia e recintos de fossos da Pré-História Recente: resultados da prospecção geofísica em Xancra (Cuba, Beja). Apontamentos de Arqueologia e Património, 7, Lisboa, Era Arqueologia, 8, Lisboa

    Google Scholar 

  • Valera AC (2012a) In: Gibson A (ed) Mind the gap: Neolithic and Chalcolithic enclosures of South Portugal. Enclosing the Neolithic. Recent studies in Britain and Europe, BAR, p 165

    Google Scholar 

  • Valera AC (2012b) In Gibaja JF, Carvalho AF, Chambom P (eds) Funerary practices from the mesolithic to the chalcolithic of the Northwest Mediterranean, British Archaeological Reports, p 103

    Google Scholar 

  • Valera AC, Lago M, Duarte C, Evangelista LS (2000) Ambientes funerários no complexo arqueológico dos Perdigões: uma análise preliminar no contexto das práticas funerárias calcolíticas no Alentejo, Era Arqueologia, vol 2, Lisboa, Era/Colibri, p 84

    Google Scholar 

  • Valera AC, Silva AM, Márquez Romero JEM (2014a) The temporality of Perdigões enclosures: absolute chronology of the structures and social practices, SPAL 23:11

    Google Scholar 

  • Valera AC, Silva AM, Cunha C, Evangelista LS (2014b) In: Valera AC (ed) Recent prehistoric enclosures and funerary practices, vol 2676. BAR International Series, Oxford, pp 37–57

    Google Scholar 

  • Vértes L, Tóth L (1963) Der Gebrauch des Glasigen quartzporphyrs im Paläolithikum des Bükk-Gebirges. Acta Arch Hung 15:3

    Google Scholar 

  • Visy et al (eds) (2003) Hungarian archaeology at the turn of the Millennium, Nemzeti Kulturális Örökség Minisztériuma, Budapest

    Google Scholar 

  • Webster M (1975) Gems, their sources, description and identification, London

    Google Scholar 

  • Wong PZ, Howard J, Lin JS (1986) Surface roughening and the fractal nature of rocks. Phys Rev Lett 57:637

    Article  Google Scholar 

  • Woolley CL (1934) Ur excavations 2: the royal cemetery, Oxford

    Google Scholar 

  • Yurgenson GA, Sukharev BP (1984) Localization conditions and mineral zoning of lazurite-containing bodies of Badakhshan. Zap Vses Min Obshch 113:498–505

    Google Scholar 

  • Zöldföldi J, Kasztovszky Zs (2003) In: Hahn O, Goedicke C, Fuchs R, Horn I (eds) Proceedings of the international conference on archäometrie und Denkmalpflege. Universität Berlin, Berlin, p 194

    Google Scholar 

  • Zöldföldi J, Kasztovszky Zs (2009) In: Maniatis Y (eds) ASMOSIA VII. Proceedings of the 7th international conference of association for the study of marble and other stones in antiquity. École française d’Athènes, Athenes, p 677

    Google Scholar 

Download references

Acknowledgments

The neutron-based experiments have been performed at the Budapest Neutron Centre, Hungary and at the FRMII, Germany. Most of the above mentioned research projects (the study of prehistoric stone objects, lapis lazuli, stone idols, the Egyptian vessel) have been performed using the financial support by the Transnational Access to Research Infrastructures activity in the 7th Framework Programme of the EU (CHARISMA Grant Agreement n. 228330).

The provenance study of prehistoric stone objects was also supported by the OTKA Hungarian Scientific Research Fund (Grant K 100385).

The archaeological project was carried out with the permission of the Dirección Nacional de Arqueología, Bolivia, and was financially supported by the OTKA Hungarian Scientific Research Fund (Grant T 047048), the Curtiss T. and Mary G. Brennan Foundation and the Heinz Foundation.

The colleagues from the Centre for Energy Research are thankful to Jesse L. Weil for the careful proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zsolt Kasztovszky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kasztovszky, Z. et al. (2017). Ceramics, Marbles and Stones in the Light of Neutrons: Characterization by Various Neutron Methods. In: Kardjilov, N., Festa, G. (eds) Neutron Methods for Archaeology and Cultural Heritage. Neutron Scattering Applications and Techniques. Springer, Cham. https://doi.org/10.1007/978-3-319-33163-8_6

Download citation

Publish with us

Policies and ethics