Advertisement

Pruritus pp 49-55 | Cite as

In Vitro Models of Itch

  • Nicolas LebonvalletEmail author
  • Laurent Misery
Chapter

Abstract

Although itch is perceived through the brain, in vitro studies are possible and necessary to study its genesis. Cultures of keratinocytes or neurons or mast cells can be used. However, best models are provided by the co-culture of neurons and other cells: keratinocytes, mast cells, Langerhans cells, etc.… The best model is the co-culture of neurons and skin explants. In these models, representative biochemical, and sometimes electrophysiological, measurements can be performed.

Keywords

Pruritus Itch Model In vitro Ex vivo Pruritus Histamine Neuropeptide Proteases Neuron Keratinocyte Mast cell Cell culture 

Abbreviations

AP

Agonist Peptide

CGRP

Calcitonin Gene-Related Peptide

CNS

Central Nervous System

DRG

Dorsal Root Gangli

MMP

Matrix Metallo Protease

NGF

Nerve Growth Factor

PAR

Protease Activated Receptor

PSN

Primary Sensory Neuron

Sema3A

Semaphorin 3A

SP

Substance P

TSLP

Thymic Stromal Lymphopoietin

References

  1. 1.
    Pereira U, Misery L. Experimental models of itch. In: Misery L, Ständer S, editors. Pruritus. 1st ed. London: Springer; 2010. p. 51–9. Disponible sur: http://link.springer.com/chapter/10.1007/978-1-84882-322-8_9.CrossRefGoogle Scholar
  2. 2.
    Fostini AC, Girolomoni G. Experimental elicitation of itch: evoking and evaluation techniques. J Dermatol Sci. 2015;80(1):13–7.Google Scholar
  3. 3.
    Pereira U, Boulais N, Lebonvallet N, Lefeuvre L, Gougerot A, Misery L. Development of an in vitro coculture of primary sensitive pig neurons and keratinocytes for the study of cutaneous neurogenic inflammation. Exp Dermatol. 2010;19(10):931–5.CrossRefPubMedGoogle Scholar
  4. 4.
    Shelley WB, Arthur RP. THe neurohistology and neurophysiology of the itch sensation in man. AMA Arch Dermatol. 1957;76(3):296–323.CrossRefGoogle Scholar
  5. 5.
    Schmelz M, Schmidt R, Weidner C, Hilliges M, Torebjork HE, Handwerker HO. Chemical response pattern of different classes of C-nociceptors to pruritogens and algogens. J Neurophysiol. 2003;89(5):2441–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Wilson SR, Thé L, Batia LM, Beattie K, Katibah GE, McClain SP, et al. The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch. Cell. 2013;155(2):285–95.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bautista DM, Wilson SR, Hoon MA. Why we scratch an itch: the molecules, cells and circuits of itch. Nat Neurosci. 2014;17(2):175–82.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Cevikbas F, Kempkes C, Buhl T, Mess C, Buddenkotte J, Steinhoff M. Role of interleukin-31 and oncostatin M in itch and neuroimmune communication. In: Carstens E, Akiyama T, editors. Itch: mechanisms and treatment [internet]. Boca Raton: CRC Press; 2014. [cité 23 juill 2015]. Disponible sur: http://www.ncbi.nlm.nih.gov/books/NBK200913/.Google Scholar
  9. 9.
    Boulais N, Pereira U, Lebonvallet N, Gobin E, Dorange G, Rougier N, et al. Merkel cells as putative regulatory cells in skin disorders: an in vitro study. PLoS One. 2009;4(8):e6528.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Brazzini B, Ghersetich I, Hercogova J, Lotti T. The neuro-immuno-cutaneous-endocrine network: relationship between mind and skin. Dermatol Ther. 2003;16:123–31.CrossRefPubMedGoogle Scholar
  11. 11.
    Gouin O, Lebonvallet N, L’Herondelle K, Le Gall-Ianotto C, Buhé V, Plée-Gautier E, et al. Self-maintenance of neurogenic inflammation contributes to a vicious cycle in skin. Exp Dermatol. 2015;24:723–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Misery L. Skin, immunity and the nervous system. Br J Dermatol. 1997;137(6):843–50.CrossRefPubMedGoogle Scholar
  13. 13.
    Roosterman D, Goerge T, Schneider SW, Bunnett NW, Steinhoff M. Neuronal control of skin function: the skin as a neuroimmunoendocrine organ. Physiol Rev. 2006;86(4):1309–79.CrossRefPubMedGoogle Scholar
  14. 14.
    Boulais N, Pereira U, Lebonvallet N, Misery L. The whole epidermis as the forefront of the sensory system. Exp Dermatol. 2007;16(8):634–5.CrossRefPubMedGoogle Scholar
  15. 15.
    Pang Z, Sakamoto T, Tiwari V, Kim Y-S, Yang F, Dong X, et al. Selective keratinocyte stimulation is sufficient to evoke nociception in mice. Pain. 2015;156(4):656–65.CrossRefPubMedGoogle Scholar
  16. 16.
    Andoh T, Kuraishi Y. Lipid mediators and itch. In: Carstens E, Akiyama T, editors. Itch: mechanisms and treatment [internet]. Boca Raton: CRC Press; 2014. [cité 24 juill 2015]. Disponible sur: http://www.ncbi.nlm.nih.gov/books/NBK200912/.Google Scholar
  17. 17.
    Thurmond RL, Kazerouni K, Chaplan SR, Greenspan AJ. Peripheral neuronal mechanism of itch: histamine and itch. In: Carstens E, Akiyama T, editors. Itch: mechanisms and treatment [internet]. Boca Raton: CRC Press; 2014. [cité 24 juill 2015]. Disponible sur: http://www.ncbi.nlm.nih.gov/books/NBK200934/.Google Scholar
  18. 18.
    Greaves MW, Davies MG. Histamine receptors in human skin: indirect evidence. Br J Dermatol. 1982;107 Suppl 23:101–5.CrossRefPubMedGoogle Scholar
  19. 19.
    Rådinger M, Jensen BM, Kuehn HS, Kirshenbaum A, Gilfillan AM. Generation, isolation, and maintenance of human mast cells and mast cell lines derived from peripheral blood or cord blood. Curr Protoc Immunol. Ed John E Coligan Al. août 2010; Chapter 7: Unit 7.37.Google Scholar
  20. 20.
    Arock M, Le Nours A, Malbec O, Daëron M. Ex vivo and in vitro primary mast cells. Methods Mol Biol Clifton NJ. 2008;415:241–54.Google Scholar
  21. 21.
    Saito H, Kato A, Matsumoto K, Okayama Y. Culture of human mast cells from peripheral blood progenitors. Nat Protoc. 2006;1(4):2178–83.CrossRefPubMedGoogle Scholar
  22. 22.
    Jensen BM, Swindle EJ, Iwaki S, Gilfillan AM. Generation, isolation, and maintenance of rodent mast cells and mast cell lines. Curr Protoc Immunol [Internet]. Wiley. 2001 [cité 27 juill 2015]. Disponible sur: http://onlinelibrary.wiley.com/. doi: 10.1002/0471142735.im0323s74/abstract.
  23. 23.
    Rogers DF, Donnelly LE, éditeurs. Isolation and purification of human mast cells and basophils. Springer, Humana Press; 2001 [cité 27 juill 2015]. Disponible sur: http://link.springer.com/protocol/10.1385%2F1-59259-151-5%3A161#page-1.
  24. 24.
    Kulka M, Metcalfe DD. Isolation of tissue mast cells. Curr Protoc Immunol. Ed John E Coligan Al. mai 2001; CHAPTER: Unit – 7.25.Google Scholar
  25. 25.
    Willheim M, Agis H, Sperr WR, Köller M, Bankl H-C, Kiener H, et al. Purification of human basophils and mast cells by multistep separation technique and mAb to CDw17 and solCD117c-kit. J Immunol Methods. 1995;182(1):115–29.CrossRefPubMedGoogle Scholar
  26. 26.
    Dai Y, But PP-H, Chan Y-P, Matsuda H, Kubo M. Antipruritic and antiinflammatory effects of aqueous extract from Si-Wu-Tang. Biol Pharm Bull. 2002;25(9):1175–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Furuno T, Hagiyama M, Sekimura M, Okamoto K, Suzuki R, Ito A, et al. Cell adhesion molecule 1 (CADM1) on mast cells promotes interaction with dorsal root ganglion neurites by heterophilic binding to nectin-3. J Neuroimmunol. 2012;250(1–2):50–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Suzuki R, Furuno T, McKay DM, Wolvers D, Teshima R, Nakanishi M, et al. Direct neurite-mast cell communication in vitro occurs via the neuropeptide substance P. J Immunol Baltim Md. 1999;163(5):2410–5.Google Scholar
  29. 29.
    Suzuki R, Furuno T, Teshima R, Nakanishi M. Bi-directional relationship of in vitro mast cell-nerve communication observed by confocal laser scanning microscopy. Biol Pharm Bull. 2001;24(3):291–4.CrossRefPubMedGoogle Scholar
  30. 30.
    Carstens E, Akiyama T, editors. Itch: mechanisms and treatment [internet]. Boca Raton: CRC Press; 2014. [cité 24 juill 2015]. Disponible sur: http://www.ncbi.nlm.nih.gov/books/NBK200931/.Google Scholar
  31. 31.
    Papoiu ADP, Tey HL, Coghill RC, Wang H, Yosipovitch G. Cowhage-induced itch as an experimental model for pruritus. A comparative study with histamine-induced itch. PLoS One. 2011;6(3):e17786.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Campenot RB. Local control of neurite development by nerve growth factor. Proc Natl Acad Sci. 1977;74(10):4516–9.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Campenot RB, Lund K, Mok S-A. Production of compartmented cultures of rat sympathetic neurons. Nat Protoc. 2009;4(12):1869–87.CrossRefPubMedGoogle Scholar
  34. 34.
    Grothe C, Unsicker K. Neuron-enriched cultures of adult rat dorsal root ganglia: establishment, characterization, survival, and neuropeptide expression in response to trophic factors. J Neurosci Res. 1987;18(4):539–50.CrossRefPubMedGoogle Scholar
  35. 35.
    Liu Q, Weng H-J, Patel KN, Tang Z, Bai H, Steinhoff M, et al. The distinct roles of two GPCRs, MrgprC11 and PAR2, in itch and hyperalgesia. Sci Signal. 2011;4(181):ra45.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Pereira U, Boulais N, Lebonvallet N, Pennec JP, Dorange G, Misery L. Mechanisms of the sensory effects of tacrolimus on the skin. Br J Dermatol. 2010;163(1):70–7.PubMedGoogle Scholar
  37. 37.
    Nakano T, Andoh T, Tayama M, Kosaka M, Lee J-B, Kuraishi Y. Effects of topical application of tacrolimus on acute itch-associated responses in mice. Biol Pharm Bull. 2008;31(4):752–4.CrossRefPubMedGoogle Scholar
  38. 38.
    Kim HO, Lee CH, Ahn HK, Park CW. Effects of tacrolimus ointment on the expression of substance P, nerve growth factor, and neurotrophin-3 in atopic dermatitis. Int J Dermatol. 2009;48:431–8.CrossRefPubMedGoogle Scholar
  39. 39.
    Tominaga M, Kamo A, Tengara S, Ogawa H, Takamori K. In vitro model for penetration of sensory nerve fibres on a Matrigel basement membrane: implications for possible application to intractable pruritus. Br J Dermatol. 2009;161(5):1028–37.CrossRefPubMedGoogle Scholar
  40. 40.
    Tominaga M, Tengara S, Kamo A, Ogawa H, Takamori K. Matrix metalloproteinase-8 is involved in dermal nerve growth: implications for possible application to pruritus from in vitro models. J Invest Dermatol. 2011;131(10):2105–12.CrossRefPubMedGoogle Scholar
  41. 41.
    Ulmann L, Rodeau J-L, Danoux L, Contet-Audonneau J-L, Pauly G, Schlichter R. Trophic effects of keratinocytes on the axonal development of sensory neurons in a coculture model. Eur J Neurosci. 2007;26(1):113–25.CrossRefPubMedGoogle Scholar
  42. 42.
    Ulmann L, Rodeau J-L, Danoux L, Contet-Audonneau J-L, Pauly G, Schlichter R. Dehydroepiandrosterone and neurotrophins favor axonal growth in a sensory neuron-keratinocyte coculture model. Neuroscience. 2009;159(2):514–25.CrossRefPubMedGoogle Scholar
  43. 43.
    Lebonvallet N, Pennec J-P, Le Gall C, Pereira U, Boulais N, Cheret J, et al. Effect of human skin explants on the neurite growth of the PC12 cell line. Exp Dermatol. 2013;22(3):224–5.CrossRefPubMedGoogle Scholar
  44. 44.
    Le Gall-Ianotto C, Andres E, Hurtado SP, Pereira U, Misery L. Characterization of the first coculture between human primary keratinocytes and the dorsal root ganglion-derived neuronal cell line F-11. Neuroscience. 2012;210:47–57.CrossRefPubMedGoogle Scholar
  45. 45.
    Gingras M, Bergeron J, Déry J, Durham HD, Berthod F. In vitro development of a tissue-engineered model of peripheral nerve regeneration to study neurite growth. FASEB J Off Publ Fed Am Soc Exp Biol. 2003;17(14):2124–6.Google Scholar
  46. 46.
    Lebonvallet N, Boulais N, Le Gall C, Pereira U, Gauché D, Gobin E, et al. Effects of the re-innervation of organotypic skin explants on the epidermis. Exp Dermatol. 2012;21(2):156–8.CrossRefPubMedGoogle Scholar
  47. 47.
    Sevrain D, Le Grand Y, Buhé V, Jeanmaire C, Pauly G, Carré J-L, et al. Two-photon microscopy of dermal innervation in a human re-innervated model of skin. Exp Dermatol. 2013;22(4):290–1.CrossRefPubMedGoogle Scholar
  48. 48.
    Roggenkamp D, Falkner S, Stäb F, Petersen M, Schmelz M, Neufang G. Atopic keratinocytes induce increased neurite outgrowth in a coculture model of porcine dorsal root ganglia neurons and human skin cells. J Invest Dermatol. 2012;132(7):1892–900.CrossRefPubMedGoogle Scholar
  49. 49.
    Kumamoto J, Nakatani M, Tsutsumi M, Goto M, Denda S, Takei K, et al. Coculture system of keratinocytes and dorsal-root-ganglion-derived cells for screening neurotrophic factors involved in guidance of neuronal axon growth in the skin. Exp Dermatol. 2014;23(1):58–60.Google Scholar
  50. 50.
    Tominaga M, Tengara S, Kamo A, Ogawa H, Takamori K. Psoralen-ultraviolet A therapy alters epidermal Sema3A and NGF levels and modulates epidermal innervation in atopic dermatitis. J Dermatol Sci. 2009;55(1):40–6.CrossRefPubMedGoogle Scholar
  51. 51.
    Tominaga M, Ogawa H, Takamori K. Decreased production of semaphorin 3A in the lesional skin of atopic dermatitis. Br J Dermatol. 2008;158(4):842–4.CrossRefPubMedGoogle Scholar
  52. 52.
    Roggenkamp D, Köpnick S, Stäb F, Wenck H, Schmelz M, Neufang G. Epidermal nerve fibers modulate keratinocyte growth via neuropeptide signaling in an innervated skin model. J Invest Dermatol. 2013;133(6):1620–8.CrossRefPubMedGoogle Scholar
  53. 53.
    Lebonvallet N, Jeanmaire C, Danoux L, Sibille P, Pauly G, Misery L. The evolution and use of skin explants: potential and limitations for dermatological research. Eur J Dermatol EJD. 2010;20(6):671–84.PubMedGoogle Scholar
  54. 54.
    Lebonvallet N, Pennec J-P, Le Gall-Ianotto C, Chéret J, Jeanmaire C, Carré J-L, et al. Activation of primary sensory neurons by the topical application of capsaicin on the epidermis of a re-innervated organotypic human skin model. Exp Dermatol. 2014;23(1):73–5.Google Scholar
  55. 55.
    Maurer K, Bostock H, Koltzenburg M. A rat in vitro model for the measurement of multiple excitability properties of cutaneous axons. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2007;118(11):2404–12.CrossRefGoogle Scholar
  56. 56.
    Zimmermann K, Hein A, Hager U, Kaczmarek JS, Turnquist BP, Clapham DE, et al. Phenotyping sensory nerve endings in vitro in the mouse. Nat Protoc. 2009;4(2):174–96.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Spampinato SM, editor. Skin–nerve preparation to assay the function of opioid receptors in peripheral endings of sensory neurons. New York: Springer; 2015. [cité 30 juill 2015]. Disponible sur: http://link.springer.com/protocol/10.1007%2F978-1-4939-1708-2_17.Google Scholar
  58. 58.
    Akiyama T, Carstens E. Spinal coding of itch and pain. In: Carstens E, Akiyama T, editors. Itch: mechanisms and treatment [internet]. Boca Raton: CRC Press; 2014. [cité 30 juill 2015]. Disponible sur: http://www.ncbi.nlm.nih.gov/books/NBK200915/.Google Scholar
  59. 59.
    Ständer S, Weisshaar E, Raap U. Emerging drugs for the treatment of pruritus. Expert Opin Emerg Drugs. 2015;20(3):515–21.Google Scholar
  60. 60.
    Mollanazar NK, Smith PK, Yosipovitch G. Mediators of chronic pruritus in atopic dermatitis: getting the itch out? Clin Rev Allergy Immunol. 2015;1–30.Google Scholar
  61. 61.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.CrossRefPubMedGoogle Scholar
  62. 62.
    Guo X, Spradling S, Stancescu M, Lambert S, Hickman JJ. Derivation of sensory neurons and neural crest stem cells from human neural progenitor hNP1. Biomaterials. 2013;34(18):4418–27.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Lebonvallet N, Boulais N, Le Gall C, Chéret J, Pereira U, Mignen O, et al. Characterization of neurons from adult human skin-derived precursors in serum-free medium : a PCR array and immunocytological analysis. Exp Dermatol. 2012;21(3):195–200.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  1. 1.Laboratory of Neurosciences of BrestUniversity of BrestBrestFrance
  2. 2.Laboratory of Neurosciences of Brest, Department of DermatologyUniversity Hospital, University of BrestBrestFrance

Personalised recommendations