Advertisement

A Conceptual Model to Assess KM and Innovation Projects: A Need for an Unified Framework

  • Patrick MbassegueEmail author
  • Florent Lado Nogning
  • Mickaël Gardoni
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 467)

Abstract

Firm performance required numerous projects like total quality, reengineering of innovation and knowledge processes, rationalization projects. Their respective results and impacts are assessed through performance models or frameworks which are rarely combined although managers could benefit from integrated and coherent models, mainly for innovation and KM (Knowledge Management). Models for measuring innovation and KM performance are new and concern mainly large companies. They have almost all been developed relying on input/output frameworks. The processes generating performance are not thoroughly taking in account. Drawing upon a literature review and a theoretical study, this paper contribution is based on an integrated conceptual model combining the value innovation chain of Hansen and Birkinshaw (2007) [1], and the SECI KM model of Nonaka and Takeuchi (1995) [2], to build an integrated KM-innovation framework which can help to assess KM projects and innovation projects in different types of organizations.

Keywords

Innovation performance measurement KM performance measurement Innovation process KM process Integrated framework 

References

  1. 1.
    Hansen, M.T., Birkinshaw, J.: The innovation value chain. Harvard Bus. Rev. 85(6), 121 (2007)Google Scholar
  2. 2.
    Nonaka, I, Takeuchi, H: The Knowledge-Creating Company: How Japanese Companies Create The Dynamics of Innovation, 284 p. Oxford University Press (1995)Google Scholar
  3. 3.
    Andreeva, T., Kianto, A.: Does knowledge management really matter? Linking knowledge management practices, competitiveness and economic performance. J. Knowl. Manage. 16(4), 617–636 (2012)CrossRefGoogle Scholar
  4. 4.
    Bontis, N.: Assessing knowledge assets: a review of the models used to measure intellectual capital. Int. J. Manage. Rev. 3(1), 41–60 (2001)CrossRefGoogle Scholar
  5. 5.
    Bose, R.: Knowledge management metrics. Ind. Manage. Data Syst. 104(6), 457–468 (2004)CrossRefGoogle Scholar
  6. 6.
    Carlucci, D., Schiuma, G.: Knowledge asset value spiral: linking knowledge assets to company’s performance. Knowl. Process Manage. 13(1), 35–46 (2006)CrossRefGoogle Scholar
  7. 7.
    Nelson, R.R., Winter, S.G.: An Evolutionary Theory of Economic Change. Belknap, Cambridge (1982, 2005)Google Scholar
  8. 8.
    Hanley, S., Malafsky, G.: A guide for measuring the value of KM investments. In: Holsapple, C.W. (ed.) Handbook on Knowledge Management, pp. 369–390. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Chen, M.Y., Chen, A.P.: Integrating option model and knowledge management performance measures: an empirical study. J. Inf. Sci. 31(5), 381–393 (2005)CrossRefGoogle Scholar
  10. 10.
    Kaplan, R.S., Norton, D.P.: Using the balanced scorecard as a strategic management system. Harvard Bus. Rev. 74(1), 75–85 (1996)Google Scholar
  11. 11.
    Alavi, M., Leidner, D.E.: Knowledge management systems: issues, challenges, and benefits. Commun. AIS 1(2es), 1 (1999)Google Scholar
  12. 12.
    Liebowitz, J. (ed.): Knowledge Management Handbook. CRC Press, Boca Raton (1999)Google Scholar
  13. 13.
    Wu, A.: The integration between balanced scorecard and intellectual capital. J. Intellect. Capital 6(2), 267–284 (2005)CrossRefGoogle Scholar
  14. 14.
    Freeman, R.E., Harrison, J.S., Wicks, A.C., Parmar, B.L., De Colle, S.: Stakeholder Theory: The State of the Art. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  15. 15.
    Adams, R., Bessant, J., Phelps, R.: Innovation management measurement: a review. Int. J. Manage. Rev. 8(1), 21–47 (2006)CrossRefGoogle Scholar
  16. 16.
    Tidd, J., Bessant, J., Pavitt, K.: Management de l’innovation: Intégration du Changement Technologique, Commercial et Organisationnel. De Boeck Université, Bruxelles (2006)Google Scholar
  17. 17.
    OECD: OECD SME and Entrepreneurship Outlook 2005. OECD Publishing (2005). doi: 10.1787/9789264009257-en
  18. 18.
    Alegre, J., Lapiedra, R., Chiva, R.: A measurement scale for product innovation performance. Eur. J. Innov. Manage. 9(4), 333–346 (2006)CrossRefGoogle Scholar
  19. 19.
    Lazzarotti, V., Manzini, R., Mari, L.: A model for R&D performance measurement. Int. J. Prod. Econ. 134(1), 212–223 (2011)CrossRefGoogle Scholar
  20. 20.
    Schentler, P., Lindner, F., Gleich, R.: Innovation Performance Measurement. In: Gerybadze, A., Hommel, U., Reiners, H.W., Thomaschewski, D. (eds.) Innovation and International Corporate Growth, pp. 299–317. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Edison, H., Bin Ali, N., Torkar, R.: Towards innovation measurement in the software industry. J. Syst. Softw. 86(5), 1390–1407 (2013)CrossRefGoogle Scholar
  22. 22.
    Dyer, J., Gregersen, H., Christensen, C.M.: The Innovator’s DNA, p. 87. Harvard Business Review Press, Boston (2011)Google Scholar
  23. 23.
    Cruz-Cázares, C., Bayona-Sáez, C., García-Marco, T.: You can’t manage right what you can’t measure well: technological innovation efficiency. Res. Policy 42(6), 1239–1250 (2013)CrossRefGoogle Scholar
  24. 24.
    Guan, J.C., Yam, R.C., Mok, C.K., Ma, N.: A study of the relationship between competitiveness and technological innovation capability based on DEA models. Eur. J. Oper. Res. 170(3), 971–986 (2006)CrossRefzbMATHGoogle Scholar
  25. 25.
    Hashimoto, A., Haneda, S.: Measuring the change in R&D efficiency of the Japanese pharmaceutical industry. Res. Policy 37(10), 1829–1836 (2008)CrossRefGoogle Scholar
  26. 26.
    Jayanthi, S., Witt, E.C., Singh, V.: Evaluation of potential of innovations: a DEA-based application to US photovoltaic industry. IEEE Trans. Eng. Manage. 56(3), 478–493 (2009)CrossRefGoogle Scholar
  27. 27.
    Alegre, J., Lapiedra, R., Chiva, R.: A measurement scale for product innovation performance. Eur. J. Innov. Manage. 9(4), 333–346 (2006)CrossRefGoogle Scholar
  28. 28.
    Bakhtiar, A., Purwanggono, B., Metasari, N.: Maintenance function’s performance evaluation using adapted balanced scorecard model. World Acad. Sci. Eng. Technol. 58, 16–20 (2009)Google Scholar
  29. 29.
    Kerssens-van Drongelen, I.C., Bilderbeek, J.: R&D performance measurement: more than choosing a set of metrics. R&D Manage. 29(1), 35–46 (1999)CrossRefGoogle Scholar
  30. 30.
    Mankin, E.: Measuring innovation performance. Res. Technol. Manage. 50(6), 5 (2007)Google Scholar
  31. 31.
    Chang, Y.Y., Hughes, M.: Drivers of innovation ambidexterity in small- to medium-sized firms. Eur. Manage. J. 30(1), 1–17 (2012)CrossRefGoogle Scholar
  32. 32.
    Hudson Smith, M., Smart, A., Bourne, M.: Theory and practice in SME performance measurement systems. Int. J. Oper. Prod. Manage. 21(8), 1096–1115 (2001)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2016

Authors and Affiliations

  • Patrick Mbassegue
    • 1
    Email author
  • Florent Lado Nogning
    • 2
  • Mickaël Gardoni
    • 2
  1. 1.Ecole PolytechniqueMontrealCanada
  2. 2.Ecole de Technologie SupérieureMontrealCanada

Personalised recommendations