Advertisement

Integrated Component Data Model Based on UML for Smart Components Lifecycle Management: A Conceptual Approach

  • Luiz Fernando C. S. Durão
  • Helge Eichhorn
  • Reiner Anderl
  • Klaus Schützer
  • Eduardo de Senzi ZanculEmail author
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 467)

Abstract

Cyber-Physical Production Systems (CPPS) and Smart Products are considered key features in the development of the fourth industrial revolution. To create a connected environment in manufacturing based on CPPS, components must be able to store and exchange data with machines, and with other components and assemblies along the entire production system. At the same time, Smart Product features require that products and their components be able to store and exchange data throughout their entire lifecycle. Therefore, the aim of this paper is to present a preliminary integrated component data model based on Unified Modeling Language (UML) for the implementation of CPPS and Smart Product features. The development of the data model is based on requirements gathered both from the literature review and from corporate interviews with potential users. The results are still preliminary since the research results are part of a bigger research effort under an international collaboration network.

Keywords

Cyber-Physical production systems Product lifecycle management Data model Smart products 

Notes

Acknowledgments

The authors thank the Coordination for the Improvement of Higher Education Personnel (Capes), the Brazilian National Council for Scientific and Technological Development (CNPq), and the German Research Foundation (DFG) for supporting related projects. The authors also thank the companies involved for providing real case applications.

References

  1. 1.
    Marrenbach, D., Ganschar, O., Bauer, W., Schlund, S.: Industrie 4.0 – Volkswirtschaftliches Potenzial für Deutschland. In: Bitkom, Berlin (2014)Google Scholar
  2. 2.
    Kagermann, H., Wahlster, W., Helbig, J.: Umsetzungsempfehlungen für das Zukunftsprojekt Industrie 4.0 - Abschlussbericht des Arbeitskreises Industrie 4.0, Berlin (2013)Google Scholar
  3. 3.
    Monostori, L.: Cyber-physical production systems: roots, expectations and R&D challenges. In: Procedia CIRP, pp. 9–13 (2014)Google Scholar
  4. 4.
    Westkämper, E., Zahn, E.: Wandlungsfähige Produktionsunternehmen. Springer-Verlag, Berlin (2009)CrossRefGoogle Scholar
  5. 5.
    Anderl, R.: Industrie 4.0 - advanced engineering of smart products and smart production. In: 19° Seminário Internacional de Alta Tecnologia, Piracicaba (2014)Google Scholar
  6. 6.
    Kiritsis, D.: Closed-loop PLM for intelligent products in the era of the Internet of things. CAD Comput. Aided Des. 43(5), 479–501 (2011)CrossRefGoogle Scholar
  7. 7.
    Strang, D., Anderl, R.: Assembly process driven component data model in cyber-physical production systems. In: World Congress on Engineering and Computer Science, vol. II, pp. 22–24 (2014)Google Scholar
  8. 8.
    Lee, E.A.: CPS foundations. In: 2010 47th ACM/IEEE Design Automation Conference (DAC), pp. 737–742 (2010)Google Scholar
  9. 9.
    Lee, J., Bagheri, B., Kao, H.: A cyber-physical systems architecture for industry 4. 0-based manufacturing systems. Manuf. Lett. 3, 18–23 (2015)CrossRefGoogle Scholar
  10. 10.
    Ramana, P.V.M., Rao, K.V.: Data and knowledge modeling for design process planning integration of sheet metal components. J. Intell. Manuf. 15, 607–623 (2004)CrossRefGoogle Scholar
  11. 11.
    Zhou, X., Qiu, Y., Hua, G., Wang, H., Ruan, X.: A feasible approach to the integration of CAD and CAPP. CAD Comput. Aided Des. 39(4), 324–338 (2007)CrossRefGoogle Scholar
  12. 12.
    Dipper, T., Xu, X., Klemm, P.: Defining, recognizing and representing feature interactions in a feature-based data model. Robot. Comput. Integr. Manuf. 27(1), 101–114 (2011)CrossRefGoogle Scholar
  13. 13.
    Piccard, A., Anderl, R.: Integrated component data model for smart production planning. In: 19° Seminário Internacional de Alta Tecnologia, Piracicaba (2014)Google Scholar
  14. 14.
    Barbau, R., Krima, S., Rachuri, S., Narayanan, A., Fiorentini, X., Foufou, S., Sriram, R.D.: OntoSTEP: enriching product model data using ontologies. Comput. Des. 44(6), 575–590 (2012)Google Scholar
  15. 15.
    Wang, X.V., Xu, X.W.: DIMP: an interoperable solution for software integration and product data exchange. Enterp. Inf. Syst. 6(3), 291–314 (2012)CrossRefGoogle Scholar
  16. 16.
    Anderl, R., Abele, E., Metternich, J.: Effiziente Fabrik – Effiziente Farbik 4.0 (2015). http://www.effiziente-fabrik.tu-darmstadt.de/menue/index.de.jsp
  17. 17.
    Verband Deutscher Maschinen- und Anlagenbau (Ed.). Industrie 4.0 Forum (2015)Google Scholar
  18. 18.
    Tang, X., Yun, H.: Data model for quality in product lifecycle. Comput. Ind. 59(2–3), 167–179 (2008)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2016

Authors and Affiliations

  • Luiz Fernando C. S. Durão
    • 1
  • Helge Eichhorn
    • 2
  • Reiner Anderl
    • 2
  • Klaus Schützer
    • 3
  • Eduardo de Senzi Zancul
    • 1
    Email author
  1. 1.University of São PauloSão PauloBrazil
  2. 2.Technische Universität DarmstadtDarmstadtGermany
  3. 3.Methodist University of PiracicabaPiracicabaBrazil

Personalised recommendations