Nonlinear Dynamics in Biological Systems pp 113-128

Part of the SEMA SIMAI Springer Series book series (SEMA SIMAI, volume 7) | Cite as

Mechanisms Underlying Electro-Mechanical Cardiac Alternans

  • Blas Echebarria
  • Enric Alvarez-Lacalle
  • Inma R. Cantalapiedra
  • Angelina Peñaranda
Chapter

Abstract

Electro-mechanical cardiac alternans consists in beat-to-beat changes in the strength of cardiac contraction. Despite its important role in cardiac arrhythmogenesis, its molecular origin is not well understood. The appearance of calcium alternans has often been associated to fluctuations in the sarcoplasmic reticulum calcium level (SR Ca load). However, cytosolic calcium alternans observed without concurrent oscillations in the SR Ca content suggests an alternative mechanism related to a dysfunction in the dynamics of the ryanodine receptor (RyR2). In this chapter we review recent results regarding the relative role of SR Ca content fluctuations and SR refractoriness for the appearance of alternans in both ventricular and atrial cells.

References

  1. 1.
    Bers, D.M.: Cardiac excitation–contraction coupling. Nature 415 (6868), 198–205 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    Wagner, S., Maier, L.S., Bers, D.M.: Role of sodium and calcium dysregulation in tachyarrhythmias in sudden cardiac death. Circ. Res. 116, 1956–1970 (2015)CrossRefGoogle Scholar
  3. 3.
    Antzelevitch, C., Sicouri, S.: Clinical relevance of cardiac arrhythmias generated by afterdepolarizations. Role of M cells in the generation of u waves, triggered activity and torsade de pointes. J. Am. Coll. Cardiol. 23 (1), 259–277 (1994)Google Scholar
  4. 4.
    Shiferaw, Y., Aistrup, G.L., Wasserstrom, J.A.: Intracellular Ca2+ waves, afterdepolarizations, and triggered arrhythmias. Cardiovasc. Res. 95 (3), 265–268 (2012)CrossRefGoogle Scholar
  5. 5.
    Xie, Y., Sato, D., Garfinkel, A., Qu, Z., Weiss, J.N.: So little source, so much sink: requirements for afterdepolarizations to propagate in tissue. Biophys J. 99 (5), 1408–1415 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    Alvarez-Lacalle, E., Peñaranda, A., Cantalapiedra, I.R., Hove-Madsen, L., Echebarria, B.: Effect of RyR2 refractoriness and hypercalcemia on calcium overload, spontaneous release, and calcium alternans. Comput. Cardiol. 40, 683–686 (2013)Google Scholar
  7. 7.
    Laurita, K.R., Rosenbaum, D.S.: Cellular mechanisms of arrhythmogenic cardiac alternans. Prog. Biophys. Mol. Biol. 97 (2–3), 332–347 (2008)CrossRefGoogle Scholar
  8. 8.
    Weiss, J.N., Karma, A., Shiferaw, Y., Chen, P.S., Garfinkel, A., Qu, Z.: From pulsus to pulseless: the saga of cardiac alternans. Circ. Res. 98 (10), 1244–1253 (2006)CrossRefGoogle Scholar
  9. 9.
    Pastore, J.M., Girouard, S.D., Laurita, K.R., Akar, F.G., Rosenbaum, D.S.: Mechanism linking T-wave alternans to the genesis of cardiac fibrillation. Circulation 99 (10), 1385–1394 (1999)CrossRefGoogle Scholar
  10. 10.
    Karma, A.: Electrical alternans and spiral wave breakup in cardiac tissue. Chaos Interdiscip. J. Nonlinear Sci. 4 (3), 461–472 (1994)CrossRefGoogle Scholar
  11. 11.
    Echebarria, B., Karma, A.: Mechanisms for initiation of cardiac discordant alternans. Eur. Phys. J. Spec. Top. 146 (1), 217–231 (2007)CrossRefGoogle Scholar
  12. 12.
    Chudin, E., Goldhaber, J., Garfinkel, A., Weiss, J., Kogan, B.: Intracellular Ca 2+ dynamics and the stability of ventricular tachycardia. Biophys. J. 77 (6), 2930–2941 (1999)CrossRefGoogle Scholar
  13. 13.
    Wang, L., Myles, R.C., De Jesus, N.M., Ohlendorf, A.K., Bers, D.M., Ripplinger, C.M.: Optical mapping of sarcoplasmic reticulum Ca2+ in the intact heart ryanodine receptor refractoriness during alternans and fibrillation. Circ. Res. 114 (9), 1410–1421 (2014)CrossRefGoogle Scholar
  14. 14.
    Narayan, S.M., Franz, M.R., Clopton, P., Pruvot, E.J., Krummen, D.E.: Repolarization alternans reveals vulnerability to human atrial fibrillation. Circulation 123 (25), 2922–2930 (2011)CrossRefGoogle Scholar
  15. 15.
    Richards, M., Clarke, J., Saravanan, P., Voigt, N., Dobrev, D., Eisner, D., Trafford, A., Dibb, K.: Transverse tubules are a common feature in large mammalian atrial myocytes including human. Am. J. Physiol. Heart Circ. Physiol. 301 (5), H1996–2005 (2011)CrossRefGoogle Scholar
  16. 16.
    Peñaranda, A., Alvarez-Lacalle, E., Cantalapiedra, I.R., Echebarria, B.: Nonlinearities due to Refractoriness in SR Ca Release. Comput. Cardiol. 39, 297–300 (2012)Google Scholar
  17. 17.
    Shkryl, V.M., Maxwell, J.T., Domeier, T.L., Blatter, L.A.: Refractoriness of sarcoplasmic reticulum Ca2+ release determines Ca2+ alternans in atrial myocytes. Am. J. Physiol. Heart Circ. Physiol. 302 (11), H2310–H2320 (2012)CrossRefGoogle Scholar
  18. 18.
    Hüser, J., Wang, Y.G., Sheehan, K.A., Cifuentes, F., Lipsius, S.L., Blatter, L.A.: Functional coupling between glycolysis and excitation-contraction coupling underlies alternans in cat heart cells. J. Physiol. 524 (3), 795–806 (2000)CrossRefGoogle Scholar
  19. 19.
    Llach, A., Molina, C.E., Fernandes, J., Padro, J., Cinca, J., Hove-Madsen, L.: Sarcoplasmic reticulum and L-type Ca channel activity regulate the beat-to-beat stability of calcium handling in human atrial myocytes. J. Physiol. 589, 3247–3262 (2011)CrossRefGoogle Scholar
  20. 20.
    Díaz, M.E., O’Neill, S.C., Eisner, D.A.: Sarcoplasmic reticulum calcium content fluctuation is the key to cardiac alternans. Circ. Res. 94 (5), 650–656 (2004)CrossRefGoogle Scholar
  21. 21.
    Shiferaw, Y., Watanabe, M.A., Garfinkel, A., Weiss, J.N., Karma, A.: Model of intracellular calcium cycling in ventricular myocytes. Biophys. J. 85 (6), 3666–3686 (2003)CrossRefGoogle Scholar
  22. 22.
    Restrepo, J.G., Weiss, J.N., Karma, A.: Calsequestrin-mediated mechanism for cellular calcium transient alternans. Biophys. J. 95 (8), 3767–3789 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    Picht, E., DeSantiago, J., Blatter, L.A., Bers, D.M.: Cardiac alternans do not rely on diastolic sarcoplasmic reticulum calcium content fluctuations. Circ. Res. 99 (7), 740–748 (2006)CrossRefGoogle Scholar
  24. 24.
    Sobie, E.A., Song, L.S., Lederer, W.J.: Restitution of Ca2+ release and vulnerability to arrhythmias. J. Cardiovasc. Electrophysiol. 17 (Suppl 1), S64–S70 (2006)CrossRefGoogle Scholar
  25. 25.
    Fill, M., Copello, J.A.: Ryanodine receptor calcium release channels. Physiol. Rev. 82 (4), 893–922 (2002)CrossRefGoogle Scholar
  26. 26.
    Chang, K.C., Bayer, J.D., Trayanova, N.A.: Disrupted calcium release as a Mechanism for atrial alternans associated with human atrial fibrilation. PLoS Comput. Biol. 10 (12), e1004011 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    Alvarez-Lacalle, E., Cantalapiedra, I.R., Peñaranda, A., Cinca, J., Hove-Madsen, L., Echebarria, B.: Dependency of calcium alternans on ryanodine receptor refractoriness. PLoS One 8 (2), e55042 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    Shannon, T.R., Wang, F., Puglisi, J., Weber, C., Bers, D.M.: A mathematical treatment of integrated Ca dynamics within the ventricular myocyte. Biophys. J. 87 (5), 3351–3371 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    Lugo, C.A., Cantalapiedra, I.R., Peñaranda, A., Hove-Madsen, L., Echebarria, B.: Are SR Ca content fluctuations or SR refractoriness the key to atrial cardiac alternans?: insights from a human atrial model. Am. J. Physiol. Heart Circ. Physiol. 306 (11), H1540–H1552 (2014)CrossRefGoogle Scholar
  30. 30.
    Rovetti, R., Cui, X., Garfinkel, A., Weiss, J.N., Qu, Z.: Spark-induced sparks as a mechanism of intracellular calcium alternans in cardiac myocytes. Circ. Res. 106 (10), 1582–1591 (2010)CrossRefGoogle Scholar
  31. 31.
    Restrepo, J.G., Karma, A.: Spatiotemporal intracellular calcium dynamics during cardiac alternans. Chaos Interdiscip. J. Nonlinear Sci. 19, 037115 (2009)CrossRefGoogle Scholar
  32. 32.
    Cantalapiedra, I.R., Lugo, C.A., Peñaranda, A., Echebarria, B.: Calcium alternans produced by increased sarcoplasmic reticulum refractoriness. Comput. Cardiol. 38, 645–648 (2011)Google Scholar
  33. 33.
    Alvarez-Lacalle, E., Echebarria, B., Spalding, J., Shiferaw, Y.: Calcium alternans is due to an order-disorder phase transition in cardiac cells. Phys. Rev. Lett. 114 (10), 108101 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    Marcq, P., Chaté, H., Manneville, P.: Universality in Ising-like phase transitions of lattices of coupled chaotic maps. Phys. Rev. E 55 (3), 2606 (1997)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Blas Echebarria
    • 1
  • Enric Alvarez-Lacalle
    • 1
  • Inma R. Cantalapiedra
    • 1
  • Angelina Peñaranda
    • 1
  1. 1.Departament de FísicaUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations