Skip to main content

Hearing Aid Transducers

  • Chapter
  • First Online:
Hearing Aids

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 56))

Abstract

This chapter contains a brief historical and descriptive review of the microphones, earphones, and bone vibrators that are the essential elements in a hearing aid. The dramatic reduction in size of microphones and earphones (receivers) is documented, as is their improved performance with time. A discussion of their theoretical performance (sensitivity, noise, and output) versus size is followed by a comparison of theory and practice. The practical effects of microphone location about the ear and eartip location in the ear canal, and recent improvements in the ability to measure hearing aids, end the section on microphones and receivers. The final sections, on bone vibration history and progress, cover the progress to direct-to-bone vibrators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BA:

Series magnetic microphone (Knowles)

BAHA:

Bone-anchored hearing aid

CIC:

Completely-in-the-canal

CMOS:

Complementary metal oxide semiconductor

EK:

Series electret microphone (Knowles)

ITC:

In-the-canal

JFET:

Junction field-effect transistor

KEMAR:

Knowles electronic manikin for acoustic research

MEMS:

Microelectrical mechanical systems

RECD:

Real-ear coupler difference

SLM:

Sound level meter

SPL:

Sound pressure level

THD:

Total harmonic distortion

WDRC:

Wide dynamic range compression

References

  • Adamson, R., Bance, M., & Brown, J. (2010). A piezoelectric bone-conduction bending hearing actuator. The Journal of the Acoustical Society of America, 128, 2003–2008.

    Article  CAS  PubMed  Google Scholar 

  • Aldous, C., & Stewart, J, (2014). Comparison of response of four hearing-aid-like sound sources measured on a 0.4 cc coupler and a Zwislocki coupler. Presented at S3/WG48 on Hearing Aid Standards, Orlando, FL, March 26, 2014.

    Google Scholar 

  • American National Standards Institute (ANSI). (1973). American National Standard for methods for coupler calibration of earphones, ANSI S3.7–1973, New York, NY.

    Google Scholar 

  • American National Standards Institute (ANSI). (1979). American National Standard for an occluded ear simulator, ANSI S3.25–1979, New York, NY.

    Google Scholar 

  • Bentler, R., Wu, Y., Kettel, J., & Hurtig, R. (2008). Digital noise reduction: Outcomes from laboratory and field studies. International Journal of Audiology, 47, 447–460.

    Article  PubMed  Google Scholar 

  • Berger, K. W. (1976). Early bone conduction hearing aid devices. Archives of Otolaryngology, 102, 315–318.

    Article  CAS  PubMed  Google Scholar 

  • Burkhard, M. D., & Sachs, R. M. (1975). Anthropometric manikin for acoustic research. The Journal of the Acoustical Society of America, 58, 214–222.

    Article  CAS  PubMed  Google Scholar 

  • Burkhard, M. D., & Sachs, R. M. (1977). Sound pressure in insert earphone couplers and real ears. Journal of Speech and Hearing Research, 20, 799–807.

    Article  CAS  PubMed  Google Scholar 

  • Carlson, E. V. (1963). Electro-mechanical transducer. U.S. Patent No. 3,111,563.

    Google Scholar 

  • Chang, L. (2006). Foundations of MEMS, Pearson Educational International, Upper Saddle River, NJ.

    Google Scholar 

  • Cone-Wesson, B., & Ramirez, G. (1997). Hearing sensitivity in newborns estimated from ABRs to bone-conducted sounds. Journal of the American Academy of Audiology, 8, 299–307.

    CAS  PubMed  Google Scholar 

  • Dahlin, G., Allen, F., & Collard, E. (1973). Bone-conduction thresholds of human teeth. The Journal of the Acoustical Society of America, 53, 1434–1437.

    Article  CAS  PubMed  Google Scholar 

  • Eeg-Olofsson, M., Stenfelt, S., Tjellstrom, A., & Granstrom, G. (2008). Transmission of bone-conducted sound in the human skull measured by cochlear vibrations. International Journal of Audiology, 47, 761–769.

    Article  PubMed  Google Scholar 

  • Eeg-Olofsson, M., Håkansson, B., Reinfeldt, S., Taghavi, H., Lund, H., Jansson, K., Håkansson, E., & Stalfors, J. (2014). The bone conduction implant-first implantation, surgical and audiologic aspects. Otology & Neurotology, 35, 679–685.

    Google Scholar 

  • Flottorp, G., & Solberg, S. (1976). Mechanical impedance of human headbones (forehead and mastoid portion of temporal bone) measured under ISO/IEC conditions. The Journal of the Acoustical Society of America, 59, 899–906.

    Article  CAS  PubMed  Google Scholar 

  • Frank, T., & Richter, U. (1985). Influence of temperature on the output of a mechanical coupler. Ear and Hearing, 6, 206–210.

    Article  CAS  PubMed  Google Scholar 

  • Frye, G. (1995). CIC correction table. Frye Electronics, Portland, OR.

    Google Scholar 

  • Gebert, A. & Saltykov, O. (2011). Testing wide band hearing aids. Presentation to S3 WG48 Standards Working Group, Chicago, April 6, 2011.

    Google Scholar 

  • Gebert, A., & Saltykov, O. (2013). A conical 0.4 cc coupler. Presentation to ANSI S3 Working Group 48, April 3, Anaheim, CA.

    Google Scholar 

  • Goode, R. L., Killion, M. C., Nakamura, K., & Nishihara, S. (1994). New knowledge about the function of the human middle ear: Development of an improved analog model. The American Journal of Otology, 15, 145–154.

    Article  CAS  PubMed  Google Scholar 

  • G.R.A.S. (2013). RA0252 0.4 cc coupler. G.R.A.S. Sound & Vibration A/S, Denmark.

    Google Scholar 

  • Håkansson, B. (2003). The balanced electromagnetic separation transducer: A new bone conduction transducer. The Journal of the Acoustical Society of America, 113, 818–825.

    Article  PubMed  Google Scholar 

  • Håkansson, B., & Carlsson, P. (1989). Skull simulator for direct bone conduction hearing devices. Scandinavian Audiology, 18, 91–98.

    Article  PubMed  Google Scholar 

  • Håkansson, B., Tjellström, A., Rosenhall, U., & Carlsson, P. (1985). The bone-anchored hearing aid. Principal design and psychoacoustical evaluation. Acta Oto-Laryngolica, 100, 229–239.

    Article  Google Scholar 

  • Håkansson, B., Carlsson, P., & Tjellström, A. (1986). The mechanical point impedance of the human head, with and without skin penetration. The Journal of the Acoustical Society of America, 80, 1065–1075.

    Article  PubMed  Google Scholar 

  • Håkansson, B., Reinfeldt, S., Eeg-Olofsson, M., Ostli, P., Taghavi, H., Adler, J., Gabrielsson, J., Stenfelt, S., & Granström, G. (2010). A novel bone conduction implant (BCI): Engineering aspects and pre-clinical studies. International Journal of Audiology, 49, 203–215.

    Article  PubMed  Google Scholar 

  • Hallmo, P., Sundby, A., & Mair, I. (1991). High-frequency audiometry. Response characteristics of the KH70 vibrator. Scandinavian Audiology, 20, 139–143.

    Article  CAS  PubMed  Google Scholar 

  • Harada, M. (1989). Single port coupler for resonance splitting in a hearing aid. U.S. Patent No. D300,660.

    Google Scholar 

  • Hassepass, F., Bulla, S., Aschendorff, A., Maier, W., Traser, L., Steinmetz, C., Wesarg, T., & Arndt, S. (2015). The bonebridge as a transcutaneous bone conduction hearing system: Preliminary surgical and audiological results in children and adolescents. European Archives of Otorhinolaryngology, 272(9), 2235–2241.

    Article  PubMed  Google Scholar 

  • Haughton, P. M. (1982). A system for generating a variable mechanical impedance and its use in an investigation of the electromechanical properties of the B71 audiometric bone vibrator. British Journal of Audiology, 16, 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Hol, M., Nelissen, R., Agterberg, M., Cremers, C., & Snik, A. (2013). Comparison between a new implantable transcutaneous bone conductor and percutaneous bone-conduction hearing implant. Otology & Neurotology, 34, 1071–1075.

    Article  Google Scholar 

  • Huber, A., Sim, J., Xie, Y., Chatzimichalis, M., Ullrich, O., & Röösli, C. (2013). The Bonebridge: Preclinical evaluation of a new transcutaneously-activated bone anchored hearing device. Hearing Research, 301, 93–99.

    Article  CAS  PubMed  Google Scholar 

  • Hulecki, L., & Small, S. (2011). Behavioral bone-conduction thresholds for infants with normal hearing. Journal of the American Academy of Audiology, 22, 81–92.

    Article  PubMed  Google Scholar 

  • IEC:60318-6. (2007). Electroacoustics—Simulators of human head and ear—Part 6: Mechanical coupler for the measurement on bone vibrators. Geneva, Switzerland: International Electrotechnical Commission.

    Google Scholar 

  • Jerger, J., Jerger S., & Mauldin, L. (1972). Studies in impedance audiometry. I. Normal and sensorineural ears. Archives of Otolaryngology, 96, 513–523.

    Google Scholar 

  • Jessen A. (2013). Presentation given during “Masterclass of Advanced Amplification and Aural Rehabilitation” at University College London, March 2013.

    Google Scholar 

  • Khanna, S. M., Tonndorf, J., & Queller, J. (1976). Mechanical parameters of hearing by bone conduction. The Journal of the Acoustical Society of America, 60, 139–154.

    Article  CAS  PubMed  Google Scholar 

  • Killion, M. C. (1975). Vibration sensitivity measurements on subminiature condenser microphones. Journal of the Audio Engineering Society, 23, 123–128.

    Google Scholar 

  • Killion, M. C. (1976). Noise of ears and microphones. The Journal of the Acoustical Society of America, 59, 424–433.

    Article  CAS  PubMed  Google Scholar 

  • Killion, M. C. (1979). Design and evaluation of high fidelity hearing aids. Doctoral thesis, Northwestern University, Evanston, IL.

    Google Scholar 

  • Killion, M. C. (1992). Elmer Victor Carlson: A lifetime of achievement. Bulletin of the American Auditory Society, 17, 10–13, 20.

    Google Scholar 

  • Killion, M. C., & Carlson, E. V. (1974). A subminiature electret-condenser microphone of new design. Journal of the Audio Engineering Society, 22, 237–244.

    Google Scholar 

  • Killion, M. C., & Tillman, T. W. (1982). Evaluation of high-fidelity hearing aids. Journal of Speech Hearing Research, 25, 15–25.

    Article  CAS  PubMed  Google Scholar 

  • Killion, M. C., Wilber, L. A., & Gudmundsen, G. I. (1988). Zwislocki was right . . . . Hearing Instruments, 39, 14–18.

    Google Scholar 

  • Killion, M. C., Schulein, R., Christensen, L., Fabry, D., Revit, L. J., Niquette, P., & Chung, K. (1998). Real-world performance of an ITE directional microphone. The Hearing Journal, 51, 4, 24–38.

    Google Scholar 

  • Knowles Electronics. (1965). BK-1600 series balance-armature receiver data sheet. Itasca, IL.

    Google Scholar 

  • Madaffari, P. L. (1983). Directional matrix technical report. Project 10554, Industrial Research Products, Inc., a Knowles Company, Franklin Park, IL.

    Google Scholar 

  • Manrique, M., Sanhueza, I., Manrique, R., & de Abajo, J. (2014). A new bone conduction implant: Surgical technique and results. Otology & Neurotology, 35, 216–220.

    Article  Google Scholar 

  • Margolis, R., & Popelka, G. (2014). Bone-conduction calibration. Seminars in Hearing, 35(4), 329–345.

    Article  Google Scholar 

  • Mudry, A., & Tjellström, A. (2011). Historical background of bone conduction hearing devices and bone conduction hearing aids. Advances in Oto-Rhino-Laryngology, 71, 1–9.

    Article  PubMed  Google Scholar 

  • Nordrum, S., Erler, S., Garstecki, D., & Dhar, S. (2006). Comparison of performance on the Hearing In Noise Test using directional microphones and digital noise reduction algorithms. American Journal of Audiology, 15, 81–91.

    Article  PubMed  Google Scholar 

  • Pittmann, A. (2011). Children's performance in complex listening conditions: Effects of hearing loss and digital noise reduction. Journal of Speech, Language, and Hearing Research, 54, 1224–1239.

    Article  Google Scholar 

  • Popelka, G., Telukuntla, G., & Puria, S. (2010a). Middle-ear function at high frequencies quantified with advanced bone-conduction measures. Hearing Research, 263, 85–92.

    Article  PubMed  Google Scholar 

  • Popelka, G., Derebery, J., Blevins, N., Murray, M., Moore, B.C.J, Sweetow, R., Wu, B., & Katsis, M. (2010b). Preliminary evaluation of a novel bone-conduction device for single-sided deafness. Otology & Neurotology, 31, 492–497.

    Article  Google Scholar 

  • Powers, T., & Hamacher, V. (2002). Three microphone instrument is designed to extend benefits of directionality. Hearing Journal, 55, 38–55.

    Article  Google Scholar 

  • Powers, T., & Hamacher, V. (2004). Proving adaptive directional technology works: A review of studies. Hearing Review, 11, 46–49, 69.

    Google Scholar 

  • Reinfeldt, S., Stenfelt, S., Good, T., & Håkansson, B. (2007). Examination of bone-conducted transmission from sound field excitation measured by thresholds, ear-canal sound pressure, and skull vibrations. The Journal of the Acoustical Society of America, 121, 1576–1587.

    Article  PubMed  Google Scholar 

  • Ricketts, T. A., & Hornsby, B. W. (2005). Sound quality measures for speech in noise through a commercial hearing aid implementing digital noise reduction. The Journal of the American Academy of Audiology, 16, 270–277.

    Article  PubMed  Google Scholar 

  • Romanov, F. F. (1942). Methods for measuring the performance of hearing aids. The Journal of the Acoustical Society of America, 13, 294–304.

    Article  Google Scholar 

  • Sabatino, D., & Stromsta, C. (1969). Bone conduction thresholds from three locations on the skull. The Journal of Auditory Research, 9, 194–198.

    Google Scholar 

  • Snik, A. F., Mylanus, E. A. M., Proops, D. W., Wolfaardt, J. F., Hodgetts, W. E., Somers, T., Niparko, J. K., Wazen, J. J., Sterkers, O., Cremers, C. W. R. J., & Tjellström, A. (2005). Consensus statements on the BAHA system: Where do we stand at present? Annals of Otology, Rhinology and Laryngology, 114(Supplementum 195),191–112.

    Google Scholar 

  • Soede, W., Bilsen, F. A., & Berkhout, A. J. (1993). Assessment of a directional microphone array for hearing-impaired listeners. The Journal of the Acoustical Society of America, 94, 799–808.

    Article  CAS  PubMed  Google Scholar 

  • Stenfelt, S. (2005). Bilateral fitting of BAHAs and BAHA fitted in unilateral deaf persons: Acoustical aspects. International Journal of Audiology, 44, 178–189.

    Article  PubMed  Google Scholar 

  • Stenfelt, S. (2011). Acoustic and physiologic aspects of bone conduction hearing. Advances in Oto-Rhino-Laryngology, 71, 10–21.

    Article  PubMed  Google Scholar 

  • Stenfelt, S. (2012). Transcranial attenuation of bone conducted sound when stimulation is at the mastoid and at the bone conduction hearing aid position. Otology & Neurotology, 33, 105–114.

    Article  Google Scholar 

  • Stenfelt, S., & Håkansson, B. (1998). A miniaturized artificial mastoid using a skull simulator. Scandinavian Audiology, 27, 67–76.

    Article  CAS  PubMed  Google Scholar 

  • Stenfelt, S., & Håkansson, B. (1999). Sensitivity to bone-conducted sound: Excitation of the mastoid vs the teeth. Scandinavian Audiology, 28, 190–198.

    Article  CAS  PubMed  Google Scholar 

  • Stenfelt, S., & Goode, R. L. (2005a). Transmission properties of bone conducted sound: Measurements in cadaver heads. The Journal of the Acoustical Society of America, 118, 2373–2391.

    Article  PubMed  Google Scholar 

  • Stenfelt, S., & Goode, R. (2005b). Bone conducted sound: Physiological and clinical aspects. Otology & Neurotology, 26, 1245–1261.

    Article  Google Scholar 

  • Toll, L., Emanuel, D., & Letowski, T. (2011). Effect of static force on bone conduction hearing thresholds and comfort. International Journal of Audiology, 50, 632–635.

    Article  PubMed  Google Scholar 

  • Warren, D. (2011). An environmentally stable MEMS microphone for matched pairs in directional hearing aids. American Auditory Society Technology Update Session, AAS Final Program, p. 2, March 3, Scottsdale, AZ.

    Google Scholar 

  • Zwislocki, J. J. (1970). An acoustic coupler for earphone calibration. Report LSC-A-7. Laboratory of Sensory Communication, Syracuse University, Syracuse, NY.

    Google Scholar 

Download references

Acknowledgments

Mead Killion is Chief Technology Officer and founder of Etymotic Research, Inc., which manufactures the ER-2 earphone in Fig. 3.8 and the Linkit Array Mic in Fig. 3.7. Aart Van Halteren is Chief Technology Officer at Sonion, which manufacturers the CC Mic and several of the microphones and receivers shown in Figs. 3.1 and 3.3 and the Flat receiver in Fig. 3.4. Daniel Warren is Director of Research at Knowles Electronics, which manufactures the EK 3100 receiver in Fig. 3.5; the MEMS microphone shown in Fig. 3.2; and the CI, EK, and ED receivers in Fig. 3.9.

Conflict of interest Mead Killion has no conflict of interest.Stefan Stenfelt declares that he has no conflict of interest.Daniel Warren is an employee of Knowles Corporation, a manufacturer of hearing aid transducers.Van Halteren is an employee of Sonion, which makes transducers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mead C. Killion .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Killion, M.C., Van Halteren, A., Stenfelt, S., Warren, D.M. (2016). Hearing Aid Transducers. In: Popelka, G., Moore, B., Fay, R., Popper, A. (eds) Hearing Aids. Springer Handbook of Auditory Research, vol 56. Springer, Cham. https://doi.org/10.1007/978-3-319-33036-5_3

Download citation

Publish with us

Policies and ethics