Skip to main content

Introduction to Hearing Aids

  • Chapter
  • First Online:
Hearing Aids

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 56))

Abstract

This chapter describes the background to the volume and introduces the range of disciplines that are involved in the development and evaluation of hearing aids. It then describes some basic aspects of hearing aids, such as the different styles of hearing aids and requirements for batteries. The chapter then gives an overview and brief summary of the remaining chapters in the volume, describing the components that are used in hearing aids; the needs of users; the signal processing that is used in hearing aids for listening to speech, music, and environmental sounds; wireless accessories and wireless communication between hearing aids; the fitting of hearing aids; the benefits of bilateral fittings; the verification of fittings; and evaluation of effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aazh, H., Moore, B. C. J., & Prasher, D. (2012). The accuracy of matching target insertion gains with open-fit hearing aids. American Journal of Audiology, 21, 175–180.

    Article  PubMed  Google Scholar 

  • Akeroyd, M. A. (2008). Are individual differences in speech reception related to individual differences in cognitive ability? A survey of twenty experimental studies with normal and hearing-impaired adults. International Journal of Audiology, 47 (Suppl 2), S53–S71.

    Article  PubMed  Google Scholar 

  • ANSI (1997). ANSI S3.5–1997. Methods for the calculation of the speech intelligibility index. New York: American National Standards Institute.

    Google Scholar 

  • Bentler, R., & Mueller, H. G. (2013). Modern hearing aids: Verification, outcome measures, and follow-up. San Diego: Plural.

    Google Scholar 

  • Bones, O., & Plack, C. J. (2015). Losing the music: Aging affects the perception and subcortical neural representation of musical harmony. Journal of Neuroscience, 35, 4071–4080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brungart, D. S., Simpson, B. D., Ericson, M. A., & Scott, K. R. (2001). Informational and energetic masking effects in the perception of multiple simultaneous talkers. The Journal of the Acoustical Society of America, 110, 2527–2538.

    Article  CAS  PubMed  Google Scholar 

  • Brungart, D. S., Chang, P. S., Simpson, B. D., & Wang, D. (2006). Isolating the energetic component of speech-on-speech masking with ideal time-frequency segregation. The Journal of the Acoustical Society of America, 120, 4007–4018.

    Article  PubMed  Google Scholar 

  • Byrne, D., Dillon, H., Ching, T., Katsch, R., & Keidser, G. (2001). NAL-NL1 procedure for fitting nonlinear hearing aids: Characteristics and comparisons with other procedures. Journal of the American Academy of Audiology, 12, 37–51.

    CAS  PubMed  Google Scholar 

  • Chasin, M., & Hockley, N. S. (2014). Some characteristics of amplified music through hearing aids. Hearing Research, 308, 2–12.

    Article  PubMed  Google Scholar 

  • Clark, G. M., Blamey, P. J., Brown, A. M., Gusby, P. A., Dowell, R. C., Franz, B. K.-H., & Pyman, B. C. (1987). The University of Melbourne-Nucleus multi-electrode cochlear implant. Basel: Karger.

    Google Scholar 

  • Dillon, H. (2012). Hearing aids, 2nd ed. Turramurra, Australia: Boomerang Press.

    Google Scholar 

  • Dorman, M. F., & Gifford, R. H. (2010). Combining acoustic and electric stimulation in the service of speech recognition. International Journal of Audiology, 49, 912–919.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dreschler, W. A., Verschuure, H., Ludvigsen, C., & Westermann, S. (2001). ICRA noises: Artificial noise signals with speech-like spectral and temporal properties for hearing instrument assessment. Audiology, 40, 148–157.

    Article  CAS  PubMed  Google Scholar 

  • Durlach, N. I., Thompson, C. L., & Colburn, H. S. (1981). Binaural interaction in impaired listeners. Audiology, 20, 181–211.

    Article  CAS  PubMed  Google Scholar 

  • Füllgrabe, C., Moore, B. C. J., & Stone, M. A. (2015). Age-group differences in speech identification despite matched audiometrically normal hearing: Contributions from auditory temporal processing and cognition. Frontiers in Aging Neuroscience, 6, Article 347, 1–25.

    Google Scholar 

  • Holube, I., Fredelake, S., Vlaming, M., & Kollmeier, B. (2010). Development and analysis of an International Speech Test Signal (ISTS). International Journal of Audiology, 49, 891–903.

    Article  PubMed  Google Scholar 

  • Humes, L. E., & Roberts, L. (1990). Speech-recognition difficulties of the hearing-impaired elderly: The contributions of audibility. The Journal of Speech and Hearing Research, 33, 726–735.

    Article  CAS  PubMed  Google Scholar 

  • Jørgensen, S., Ewert, S. D., & Dau, T. (2013). A multi-resolution envelope-power based model for speech intelligibility. The Journal of the Acoustical Society of America, 134, 436–446.

    Article  PubMed  Google Scholar 

  • Kates, J. M. (2008). Digital hearing aids. San Diego: Plural.

    Google Scholar 

  • Keidser, G., Dillon, H., Flax, M., Ching, T., & Brewer, S. (2011). The NAL-NL2 prescription procedure. Audiology Research, 1, e24, 88–90.

    Google Scholar 

  • Killion, M. C., Wilber, L. A., & Gudmundsen, G. I. (1988). Zwislocki was right: A potential solution to the “hollow voice” problem (the amplified occlusion effect) with deeply sealed earmolds. Hearing Instruments, 39, 14–18.

    Google Scholar 

  • Kochkin, S. (2010). MarkeTrak VIII: Consumer satisfaction with hearing aids is slowly increasing. Hearing Journal, 63, 19–20, 22, 24, 26, 28, 30–32.

    Google Scholar 

  • Kujawa, S. G., & Liberman, M. C. (2009). Adding insult to injury: Cochlear nerve degeneration after “temporary” noise-induced hearing loss. Journal of Neuroscience, 29, 14077–14085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lunner, T., Hietkamp, R. K., Andersen, M. R., Hopkins, K., & Moore, B. C. J. (2012). Effect of speech material on the benefit of temporal fine structure information in speech for young normal-hearing and older hearing-impaired participants. Ear and Hearing, 33, 377–388.

    Article  PubMed  Google Scholar 

  • Madsen, S. M. K., & Moore, B. C. J. (2014). Music and hearing aids. Trends in Hearing, 18, 1–29.

    Article  Google Scholar 

  • Madsen, S. M. K., Stone, M. A., McKinney, M. F., Fitz, K., & Moore, B. C. J. (2015). Effects of wide dynamic-range compression on the perceived clarity of individual musical instruments. The Journal of the Acoustical Society of America, 137, 1867–1876.

    Article  PubMed  Google Scholar 

  • Mills, A. W. (1958). On the minimum audible angle. The Journal of the Acoustical Society of America, 30, 237–246.

    Article  Google Scholar 

  • Moore, B. C. J. (2001). Dead regions in the cochlea: Diagnosis, perceptual consequences, and implications for the fitting of hearing aids. Trends in Amplification, 5, 1–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore, B. C. J., & Popelka, G. R. (2013). Preliminary comparison of bone-anchored hearing instruments and a dental device as treatments for unilateral hearing loss. International Journal of Audiology, 52, 678–686.

    Article  PubMed  Google Scholar 

  • Moore, B. C. J., Johnson, J. S., Clark, T. M., & Pluvinage, V. (1992). Evaluation of a dual-channel full dynamic range compression system for people with sensorineural hearing loss. Ear and Hearing, 13, 349–370.

    Article  CAS  PubMed  Google Scholar 

  • Moore, B. C. J., Stone, M. A., & Alcántara, J. I. (2001). Comparison of the electroacoustic characteristics of five hearing aids. British Journal of Audiology, 35, 307–325.

    Article  CAS  PubMed  Google Scholar 

  • Moore, B. C. J., Stainsby, T. H., Alcántara, J. I., & Kühnel, V. (2004). The effect on speech intelligibility of varying compression time constants in a digital hearing aid. International Journal of Audiology, 43, 399–409.

    Article  PubMed  Google Scholar 

  • Moore, B. C. J., Glasberg, B. R., & Stone, M. A. (2010). Development of a new method for deriving initial fittings for hearing aids with multi-channel compression: CAMEQ2–HF. International Journal of Audiology, 49, 216–227.

    Article  PubMed  Google Scholar 

  • Moore, B. C. J., Vickers, D. A., & Mehta, A. (2012a). The effects of age on temporal fine structure sensitivity in monaural and binaural conditions. International Journal of Audiology, 51, 715–721.

    Article  PubMed  Google Scholar 

  • Moore, B. C. J., Glasberg, B. R., Stoev, M., Füllgrabe, C., & Hopkins, K. (2012b). The influence of age and high-frequency hearing loss on sensitivity to temporal fine structure at low frequencies. The Journal of the Acoustical Society of America, 131, 1003–1006.

    Article  PubMed  Google Scholar 

  • Mueller, H. G., Ricketts, T. A., & Bentler, R. (2013). Modern hearing aids: Pre-fitting testing and selection considerations. San Diego: Plural.

    Google Scholar 

  • Oshima, K., Suchert, S., Blevins, N. H., & Heller, S. (2010). Curing hearing loss: Patient expectations, health care practitioners, and basic science. The Journal of Communication Disorders, 43, 311–318.

    Article  PubMed  Google Scholar 

  • Plomp, R. (1978). Auditory handicap of hearing impairment and the limited benefit of hearing aids. The Journal of the Acoustical Society of America, 63, 533–549.

    Article  CAS  PubMed  Google Scholar 

  • Plyler, P. N., Lowery, K. J., Hamby, H. M., & Trine, T. D. (2007). The objective and subjective evaluation of multichannel expansion in wide dynamic range compression hearing instruments. Journal of Speech, Language, and Hearing Research, 50, 15–24.

    Article  PubMed  Google Scholar 

  • Rivolta, M. N. (2013). New strategies for the restoration of hearing loss: Challenges and opportunities. British Medical Bulletin, 105, 69–84.

    Article  CAS  PubMed  Google Scholar 

  • Robles, L., & Ruggero, M. A. (2001). Mechanics of the mammalian cochlea. Physiological Reviews, 81, 1305–1352.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmiedt, R. A. (1996). Effects of aging on potassium homeostasis and the endocochlear potential in the gerbil cochlea. Hearing Research, 102, 125–132.

    Article  CAS  PubMed  Google Scholar 

  • Schuknecht, H. F. (1993). Pathology of the ear, 2nd ed. Philadelphia: Lea and Febiger.

    Google Scholar 

  • Scollie, S. D., Seewald, R. C., Cornelisse, L., Moodie, S., Bagatto, M., Laurnagaray, D., Beaulac, S., & Pumford, J. (2005). The desired sensation level multistage input/output algorithm. Trends in Amplification, 9, 159–197.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stone, M. A., Füllgrabe, C., Mackinnon, R. C., & Moore, B. C. J. (2011). The importance for speech intelligibility of random fluctuations in "steady" background noise. The Journal of the Acoustical Society of America, 130, 2874–2881.

    Article  PubMed  Google Scholar 

  • Stone, M. A., Paul, A. M., Axon, P., & Moore, B. C. J. (2014). A technique for estimating the occlusion effect for frequencies below 125 Hz. Ear and Hearing, 34, 49–55.

    Article  Google Scholar 

  • Zeng, F.-G., Popper, A. N., & Fay, R. R. (2003). Auditory prostheses. New York: Springer-Verlag.

    Google Scholar 

  • Zhang, T., Dorman, M. F., Gifford, R., & Moore, B. C. J. (2014). Cochlear dead regions constrain the benefit of combining acoustic stimulation with electric stimulation. Ear and Hearing, 35, 410–417.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Conflict of interest

Brian C.J. Moore has conducted research projects in collaboration with (and partly funded by) Phonak, Starkey, Siemens, Oticon, GNReseound, Bernafon, Hansaton, and Earlens. Brian C.J. Moore acts as a consultant for Earlens.Gerald Popelka declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian C. J. Moore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Moore, B.C.J., Popelka, G.R. (2016). Introduction to Hearing Aids. In: Popelka, G., Moore, B., Fay, R., Popper, A. (eds) Hearing Aids. Springer Handbook of Auditory Research, vol 56. Springer, Cham. https://doi.org/10.1007/978-3-319-33036-5_1

Download citation

Publish with us

Policies and ethics