Skip to main content

An Island Memetic Algorithm for Real World Vehicle Routing Problems

Part of the Springer Proceedings in Business and Economics book series (SPBE)

Abstract

In this paper, a new algorithm is presented which is applied to a real world Vehicle Routing Problem (VRP) of a provision company in the island of Crete in Greece. The company serves 116 customers located in Crete. This real world problem is solved effectively by a hybrid Island Memetic Algorithm (IMA) which employs Greedy Randomized Adaptive Search Procedure (GRASP) and Iterated Local Search (ILS). The proposed algorithm is also compared to five other approaches both on the real world problem and on classic benchmark instances from the literature. Methods such as GRASP, local search and Iterated Local Search (ILS) are employed as subroutines with certain probabilities in the algorithms. Furthermore, it is also demonstrated how premature convergence can be prevented by adopting specific strategy. Computational results show the superiority of the proposed hybrid Island Memetic Algorithm.

Keywords

  • Vehicle Routing Problem
  • Island Memetic Algorithms
  • Greedy Randomized Adaptive Search Procedure
  • Iterated Local Search

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-33003-7_10
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-33003-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)

References

  • Altinkemer K, Gavish B (1991) Parallel savings based heuristics for the delivery problem. Oper Res 39(3):456–469

    CrossRef  Google Scholar 

  • Baker BM, Ayechew MA (2003) A genetic algorithm for the vehicle routing problem. Comput Oper Res 30(5):787–800

    CrossRef  Google Scholar 

  • Barbarosoglu G, Ozgur D (1999) A tabu search algorithm for the vehicle routing problem. Comput Oper Res 26:255–270

    CrossRef  Google Scholar 

  • Berger J, Barkaoui M (2003) A hybrid genetic algorithm for the capacitated vehicle routing problem. Proceedings of the genetic and evolutionary computation conference, Chicago, IL, pp 646–656

    Google Scholar 

  • Besten M, Stutzle T, Dorigo M (2001) A hybrid genetic algorithm for the capacitated vehicle routing problem. In: Boers EJW et al (eds) Design of iterated local search algorithms, EvoWorkshop LNCS 2037. Springer, Berlin, pp 441–451

    Google Scholar 

  • Bodin L, Golden B (1981) Classification in vehicle routing and scheduling. Networks 11:97–108

    CrossRef  Google Scholar 

  • Bodin L, Golden B, Assad A, Ball M (1983) The state of the art in the routing and scheduling of vehicles and crews. Comput Oper Res 10:63–212

    CrossRef  Google Scholar 

  • Bullnheimer B, Hartl PF, Strauss C (1999) An improved ant system algorithm for the vehicle routing problem. Ann Oper Res 89:319–328

    CrossRef  Google Scholar 

  • Christofides N, Mingozzi A, Toth P (1979) The vehicle routing problem. In: Christofides N, Mingozzi A, Toth P, Sandi C (eds) Combinatorial optimization. Wiley, Chichester

    Google Scholar 

  • Clarke G, Wright J (1964) Scheduling of vehicles from a central depot to a number of delivery points. Oper Res 12:568–581

    CrossRef  Google Scholar 

  • Cordeau JF, Gendreau M, Laporte G, Potvin JY, Semet F (2002) A guide to vehicle routing heuristics. J Oper Res Soc 53:512–522

    CrossRef  Google Scholar 

  • Cordeau JF, Gendreau M, Hertz A, Laporte G, Sormany JS (2005) New heuristics for the vehicle routing problem. In: Langevine A, Riopel D (eds) Logistics systems: design and optimization. Wiley, Chichester, pp 279–298

    CrossRef  Google Scholar 

  • Dantzig GB, Ramser JH (1959) The truck dispatching problem. Manage Sci 6(1):80–91

    CrossRef  Google Scholar 

  • Desrochers M, Verhoog TW (1989) A matching based savings algorithm for the vehicle routing problem. Les Cahiers du GERAD G-89-04, Ecole des Hautes Etudes Commerciales de Montreal

    Google Scholar 

  • Engelbrecht AP (2007) Computational intelligence: an introduction. Wiley, Chichester

    CrossRef  Google Scholar 

  • Feo TA, Resende MGC (1995) Greedy randomized adaptive search procedure. J Glob Optim 6:109–133

    CrossRef  Google Scholar 

  • Fisher ML (1995) Vehicle routing. In: Ball MO, Magnanti TL, Momma CL, Nemhauser GL (eds) Network routing, vol 8, Handbooks in operations research and management science. Elsevier, Amsterdam, pp 1–33

    CrossRef  Google Scholar 

  • Fisher ML, Jaikumar R (1981) A generalized assignment heuristic for vehicle routing. Networks 11:109–124

    CrossRef  Google Scholar 

  • Foster BA, Ryan DM (1976) An integer programming approach to the vehicle scheduling problem. Oper Res 27:367–384

    CrossRef  Google Scholar 

  • Gendreau M, Hertz A, Laporte G (1994) A tabu search heuristic for the vehicle routing problem. Manage Sci 40:1276–1290

    CrossRef  Google Scholar 

  • Gendreau M, Laporte G, Potvin J-Y (1997) Vehicle routing: modern heuristics. In: Aarts EHL, Lenstra JK (eds) Local search in combinatorial optimization. Wiley, Chichester, pp 311–336

    Google Scholar 

  • Gendreau M, Laporte G, Potvin JY (2002) Metaheuristics for the capacitated VRP. In: Toth P, Vigo D (eds) The vehicle routing problem, Monographs on discrete mathematics and applications. Siam, Philadelphia, PA, pp 129–154

    CrossRef  Google Scholar 

  • Gillett BE, Miller LR (1974) A heuristic algorithm for the vehicle dispatch problem. Oper Res 22:240–349

    CrossRef  Google Scholar 

  • Glover F, Laguna M, Marti R (2003) Scatter search and path relinking: advances and applications. In: Glover F, Kochenberger GA (eds) Handbook of metaheuristics. Kluwer, Boston, MA, pp 1–36

    Google Scholar 

  • Golden BL, Assad AA (1988) Vehicle routing: methods and studies. Elsevier, Amsterdam

    Google Scholar 

  • Golden BL, Wasil EA, Kelly JP, Chao IM (1998) The impact of metaheuristics on solving the vehicle routing problem: algorithms, problem sets, and computational results. In: Crainic TG, Laporte G (eds) Fleet management and logistics. Kluwer, Boston, MA, pp 33–56

    CrossRef  Google Scholar 

  • Golden B, Raghavan S, Wasil E (2008) The vehicle routing problem: latest advances and new challenges. Springer, New York, NY

    CrossRef  Google Scholar 

  • Laporte G, Semet F (2002) Classical heuristics for the capacitated VRP. In: Toth P, Vigo D (eds) The vehicle routing problem, Monographs on discrete mathematics and applications. Siam, Philadelphia, PA, pp 109–128

    CrossRef  Google Scholar 

  • Laporte G, Gendreau M, Potvin J-Y, Semet F (2000) Classical and modern heuristics for the vehicle routing problem. Int Trans Oper Res 7:285–300

    CrossRef  Google Scholar 

  • Li F, Golden B, Wasil E (2005) Very large-scale vehicle routing: new test problems, algorithms and results. Comput Oper Res 32(5):1165–1179

    CrossRef  Google Scholar 

  • Lin S (1965) Computer solutions of the traveling salesman problem. Bell Syst Tech J 44:2245–2269

    CrossRef  Google Scholar 

  • Lin S, Kernighan BW (1973) An effective heuristic algorithm for the traveling salesman problem. Oper Res 21:498–516

    CrossRef  Google Scholar 

  • Lourenco HR, Martin O, Stutzle T (2002) Iterated local search. In: Glover F, Kochenberger GA (eds) Handbook of metaheuristics, vol 57, Operations research and management science. Kluwer, Norwell, MA, pp 321–353

    Google Scholar 

  • Marinakis Y, Marinaki M (2010) A hybrid genetic—particle swarm optimization algorithm for the vehicle routing problem. Expert Syst Appl 37:1446–1455

    CrossRef  Google Scholar 

  • Marinakis Y, Migdalas A (2002) Heuristic solutions of vehicle routing problems in supply chain management. In: Burkard R, Pardalos PM, Migdalas A (eds) Combinatorial and global optimization. World Scientific Publishing, Singapore, pp 205–236

    CrossRef  Google Scholar 

  • Marinakis Y, Migdalas A, Pardalos PM (2005a) Expanding neighborhood GRASP for the traveling salesman problem. Comput Optim Appl 32:231–257

    CrossRef  Google Scholar 

  • Marinakis Y, Migdalas A, Pardalos PM (2005b) A hybrid Genetic-GRASP algorithm using Langrangean relaxation for the traveling salesman problem. J Comb Optim 10:311–326

    CrossRef  Google Scholar 

  • Marinakis Y, Migdalas A, Pardalos PM (2007) A new bilevel formulation for the vehicle routing problem and a solution method using a genetic algorithm. J Glob Optim 38:555–580

    CrossRef  Google Scholar 

  • Marinakis Y, Marinaki M, Dounias G (2008) Honey bees mating optimization algorithm for the vehicle routing problem. In: Krasnogor N, Nicosia G, Pavone M, Pelta D (eds) Nature Inspired Cooperative Strategies for Optimization—NICSO 2007, vol 129, Studies in Computational Intelligence. Springer, Berlin, pp 139–148

    Google Scholar 

  • Marinakis Y, Migdalas A, Pardalos PM (2009) Multiple phase neighborhood search GRASP based on Lagrangean relaxation and random backtracking Lin Kernighan for the traveling salesman problem. J Comb Optim 17:134–156

    CrossRef  Google Scholar 

  • Marinakis Y, Marinaki M, Dounias G (2010) A hybrid particle swarm optimization algorithm for the vehicle routing problem. Eng Appl Artif Intel 23:463–472

    CrossRef  Google Scholar 

  • Marinakis Y, Iordanidou G, Marinaki M (2013) Particle swarm optimization for the vehicle routing problem with stochastic demands. Appl Soft Comput 13(4):1693–1704

    CrossRef  Google Scholar 

  • Martin O, Otto SW, Felten EW (1991) Large-step Markov chains for the traveling salesman problem. Complex Syst 5(3):299–326

    Google Scholar 

  • Mester D, Braysy O (2005) Active guided evolution strategies for the large scale vehicle routing problems with time windows. Comput Oper Res 32:1593–1614

    CrossRef  Google Scholar 

  • Mester D, Braysy O (2007) Active guided evolution strategies for large scale capacitated vehicle routing problems. Comput Oper Res 34:2964–2975

    CrossRef  Google Scholar 

  • Mole RH, Jameson SR (1976) A sequential route-building algorithm employing a generalized savings criterion. Oper Res Q 27:503–511

    CrossRef  Google Scholar 

  • Moscato P, Cotta C (2003) A gentle introduction to memetic algorithms. In: Glover F, Kochenberger GA (eds) Handbooks of metaheuristics. Kluwer, Dordrecht, pp 105–144

    Google Scholar 

  • Osman IH (1993) Metastrategy simulated annealing and tabu search algorithms for combinatorial optimization problems. Ann Oper Res 41:421–451

    CrossRef  Google Scholar 

  • Pereira FB, Tavares J (2008) Bio-inspired algorithms for the vehicle routing problem, vol 161, Studies in computational intelligence. Springer, Berlin

    Google Scholar 

  • Prins C (2004) A simple and effective evolutionary algorithm for the vehicle routing problem. Comput Oper Res 31:1985–2002

    CrossRef  Google Scholar 

  • Prins C (2008) A GRASP X evolutionary local search hybrid for the vehicle routing problem. In: Pereira FB, Tavares J (eds) Bio-inspired algorithms for the vehicle routing problem, SCI 161. Springer, Berlin, pp 35–53

    Google Scholar 

  • Rego C (1998) A subpath ejection method for the vehicle routing problem. Manage Sci 44:1447–1459

    CrossRef  Google Scholar 

  • Rego C (2001) Node-ejection chains for the vehicle routing problem: sequential and parallel algorithms. Parallel Comput 27(3):201–222

    CrossRef  Google Scholar 

  • Reimann M, Stummer M, Doerner K (2002) A savings based ant system for the vehicle routing problem. Proceedings of the genetic and evolutionary computation conference, New York, pp 1317–1326

    Google Scholar 

  • Reimann M, Doerner K, Hartl RF (2004) D-Ants: savings based ants divide and conquer the vehicle routing problem. Comput Oper Res 31(4):563–591

    CrossRef  Google Scholar 

  • Resende MGC, Ribeiro CC (2003) Greedy randomized adaptive search procedures. In: Glover F, Kochenberger GA (eds) Handbook of metaheuristics. Kluwer, Boston, MA, pp 219–249

    Google Scholar 

  • Rochat Y, Taillard ED (1995) Probabilistic diversification and intensification in local search for vehicle routing. J Heuristics 1:147–167

    CrossRef  Google Scholar 

  • Taillard ED (1993) Parallel iterative search methods for vehicle routing problems. Networks 23:661–672

    CrossRef  Google Scholar 

  • Talbi E-G (2009) Metaheuristics: from design to implementation. Wiley, Hoboken, NJ

    CrossRef  Google Scholar 

  • Tarantilis CD (2005) Solving the vehicle routing problem with adaptive memory programming methodology. Comput Oper Res 32(9):2309–2327

    CrossRef  Google Scholar 

  • Tarantilis CD, Kiranoudis CT (2002) BoneRoute: an adaptive memory-based method for effective fleet management. Ann Oper Res 115(1):227–241

    CrossRef  Google Scholar 

  • Tarantilis CD, Kiranoudis CT, Vassiliadis VS (2002a) A backtracking adaptive threshold accepting metaheuristic method for the Vehicle Routing Problem. Syst Anal Model Simul 42(5):631–644

    Google Scholar 

  • Tarantilis CD, Kiranoudis CT, Vassiliadis VS (2002b) A list based threshold accepting algorithm for the capacitated vehicle routing problem. Int J Comp Math 79(5):537–553

    CrossRef  Google Scholar 

  • Toth P, Vigo D (2002) The vehicle routing problem, Monographs on discrete mathematics and applications. Siam, Philadelphia, PA

    CrossRef  Google Scholar 

  • Toth P, Vigo D (2003) The granular tabu search (and its application to the vehicle routing problem). INFORMS J Comput 15(4):333–348

    CrossRef  Google Scholar 

  • Toth P, Vigo D (2014) Vehicle routing: problems, methods and applications, 2nd edn, MOS-Siam series on optimization. Siam, Philadelphia, PA

    CrossRef  Google Scholar 

  • Wark P, Holt J (1994) A repeated matching heuristic for the vehicle routing problem. J Oper Res Soc 45:1156–1167

    CrossRef  Google Scholar 

  • Xu J, Kelly JP (1996) A new network flow-based tabu search heuristic for the vehicle routing problem. Transp Sci 30:379–393

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios Migdalas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this paper

Cite this paper

Rogdakis, I., Marinaki, M., Marinakis, Y., Migdalas, A. (2017). An Island Memetic Algorithm for Real World Vehicle Routing Problems. In: Grigoroudis, E., Doumpos, M. (eds) Operational Research in Business and Economics. Springer Proceedings in Business and Economics. Springer, Cham. https://doi.org/10.1007/978-3-319-33003-7_10

Download citation