Advertisement

Phototrophic Microorganisms: The Basis of the Marine Food Web

  • Wolfgang R. Hess
  • Laurence Garczarek
  • Ulrike Pfreundt
  • Frédéric Partensky
Chapter

Abstract

Although numerous marine microorganisms can exploit solar energy for photosynthesis or photoheterotrophy, cyanobacteria and microalgae are the only ones able to perform oxygenic photosynthesis and to produce organic carbon, an essential brick of life that sustains the whole marine trophic web. Here we review recent advances in the investigation of marine oxygenic microorganisms, with a special focus on cyanobacteria. We discuss novel insights into the ecology, evolution and diversity of Synechococcus and Prochlorococcus, the two most abundant and certainly the best known oxyphototrophs at all scales of organization from the gene to the global ocean. A particular emphasis is also made on diazotrophic cyanobacteria, which constitute an important source of bioavailable nitrogen to oceanic surface waters, possibly the most important external nitrogen source, before atmospheric and riverine inputs. Diazotrophic cyanobacteria are polyphyletic and display a remarkably large range of physiologies and morphologies. These include both multicellular cyanobacteria, such as the colonial Trichodesmium or the heterocyst-forming Calothrix, Richelia and Nodularia, and unicellular cyanobacteria belonging to three major groups: the symbiotic Candidatus Atelocyanobacterium thalassa (UCYN-A), the free-living Crocosphaera sp. (UCYN-B) and the UCYN-C cluster that notably encompasses Cyanothece. Whereas some of these species can form immense blooms (Nodularia, Trichodesmium), others can also have a major ecological impact even though they represent only a minor fraction of the bacterioplankton (UCYN-C). After about one billion years of evolution, which led them to colonize any single marine niche reached by solar light, cyanobacteria appear as truly fascinating organisms that constitute a major component of the marine microbial communities and are the matter of an ebullient research area. The considerable amount of omics information recently becoming available on both isolates and natural populations of marine oxyphototrophs provide a solid basis for investigating their molecular ecology, their contribution to biogeochemical cycles, as well as their possible utilization in biotechnology, data mining, or biomimetics.

Keywords

Anaerobic Ammonium Oxidation Oxygenic Photosynthesis Photosynthetically Available Radiation Average Nucleotide Identity Marine Cyanobacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The research leading to these results has received funding from the European Union Seventh Framework Programme MaCuMBA (FP7/2007-2013) under grant agreement n° 311975. This publication reflects the views only of the authors, and the European Union cannot be held responsible for any use which may be made of the information contained therein.

References

  1. Ahlgren NA, Rocap G (2012) Diversity and distribution of marine Synechococcus: multiple gene phylogenies for consensus classification and development of qPCR assays for sensitive measurement of clades in the ocean. Front Microbiol 3:213PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ahlgren NA, Noble A, Patton AP, Roache-Johnson K, Jackson L, Robinson D, McKay C, Moore LR, Saito MA, Rocap G (2014) The unique trace metal and mixed layer conditions of the Costa Rica upwelling dome support a distinct and dense community of Synechococcus. Limnol Ocean 59:2166–2184CrossRefGoogle Scholar
  3. Akram N, Palovaara J, Forsberg J, Lindh MV, Milton DL, Luo H, González JM, Pinhassi J (2013) Regulation of proteorhodopsin gene expression by nutrient limitation in the marine bacterium Vibrio sp. AND4. Environ Microbiol 15:1400–1415PubMedCrossRefGoogle Scholar
  4. Allahverdiyeva Y, Ermakova M, Eisenhut M, Zhang P, Richaud P, Hagemann M, Cournac L, Aro E-M (2011) Interplay between flavodiiron proteins and photorespiration in Synechocystis sp. PCC 6803. J Biol Chem 286:24007–24014PubMedPubMedCentralCrossRefGoogle Scholar
  5. Allahverdiyeva Y, Mustila H, Ermakova M, Bersanini L, Richaud P, Ajlani G, Battchikova N, Cournac L, Aro E-M (2013) Flavodiiron proteins Flv1 and Flv3 enable cyanobacterial growth and photosynthesis under fluctuating light. Proc Natl Acad Sci USA 110:4111–4116PubMedPubMedCentralCrossRefGoogle Scholar
  6. Amin SA, Hmelo LR, van Tol HM, Durham BP, Carlson LT, Heal KR, Morales RL, Berthiaume CT, Parker MS, Djunaedi B et al (2015) Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 522:98–101PubMedCrossRefGoogle Scholar
  7. Anderson DM, Cembella AD, Hallegraeff GM (2012) Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management. Annu Rev Mar Sci 4:143–176CrossRefGoogle Scholar
  8. Archibald JM (2009) The puzzle of plastid evolution. Curr Biol CB 19:R81–R88PubMedCrossRefGoogle Scholar
  9. Archibald JM (2012) The evolution of algae by secondary and tertiary endosymbiosis. Adv Bot Res 64:87–118CrossRefGoogle Scholar
  10. Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M et al (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86PubMedCrossRefGoogle Scholar
  11. Aryal UK, Callister SJ, Mishra S, Zhang X, Shutthanandan JI, Angel TE, Shukla AK, Monroe ME, Moore RJ, Koppenaal DW et al (2013) Proteome analyses of strains ATCC 51142 and PCC 7822 of the diazotrophic cyanobacterium Cyanothece sp. under culture conditions resulting in enhanced H2 production. Appl Environ Microbiol 79:1070–1077PubMedPubMedCentralCrossRefGoogle Scholar
  12. Asplund-Samuelsson J (2015) The art of destruction: revealing the proteolytic capacity of bacterial caspase homologs. Mol Microbiol 98:1–6PubMedCrossRefGoogle Scholar
  13. Asplund-Samuelsson J, Bergman B, Larsson J (2012) Prokaryotic caspase homologs: phylogenetic patterns and functional characteristics reveal considerable diversity. PLoS ONE 7:e49888PubMedPubMedCentralCrossRefGoogle Scholar
  14. Avrani S, Wurtzel O, Sharon I, Sorek R, Lindell D (2011) Genomic island variability facilitates Prochlorococcus-virus coexistence. Nature 474:604–608PubMedCrossRefGoogle Scholar
  15. Badger MR, Price GD (2003) CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot 54:609–622PubMedCrossRefGoogle Scholar
  16. Bandyopadhyay A, Stöckel J, Min H, Sherman LA, Pakrasi HB (2010) High rates of photobiological H2 production by a cyanobacterium under aerobic conditions. Nat Commun 1:139PubMedCrossRefGoogle Scholar
  17. Bandyopadhyay A, Elvitigala T, Liberton M, Pakrasi HB (2013) Variations in the rhythms of respiration and nitrogen fixation in members of the unicellular diazotrophic cyanobacterial genus Cyanothece. Plant Physiol 161:1334–1346PubMedPubMedCentralCrossRefGoogle Scholar
  18. Baumdicker F, Hess WR, Pfaffelhuber P et al (2010) The diversity of a distributed genome in bacterial populations. Ann Appl Probab 20:1567–1606CrossRefGoogle Scholar
  19. Baumdicker F, Hess WR, Pfaffelhuber P (2012) The infinitely many genes model for the distributed genome of bacteria. Genome Biol Evol 4:443–456PubMedPubMedCentralCrossRefGoogle Scholar
  20. Béjà O, Suzuki MT (2008) Photoheterotrophic marine prokaryotes. In: Kirchman DL (ed) Microbial ecology of the oceans. Wiley, New York, pp 131–157Google Scholar
  21. Béjà O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP, Jovanovich SB, Gates CM, Feldman RA, Spudich JL et al (2000) Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289:1902–1906PubMedCrossRefGoogle Scholar
  22. Béjà O, Spudich EN, Spudich JL, Leclerc M, DeLong EF (2001) Proteorhodopsin phototrophy in the ocean. Nature 411:786–789PubMedCrossRefGoogle Scholar
  23. Béjà O, Suzuki MT, Heidelberg JF, Nelson WC, Preston CM, Hamada T, Eisen JA, Fraser CM, DeLong EF (2002) Unsuspected diversity among marine aerobic anoxygenic phototrophs. Nature 415:630–633PubMedCrossRefGoogle Scholar
  24. Berman-Frank I, Lundgren P, Chen Y-B, Küpper H, Kolber Z, Bergman B, Falkowski P (2001) Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobacterium Trichodesmium. Science 294:1534–1537PubMedCrossRefGoogle Scholar
  25. Berman-Frank I, Bidle KD, Haramaty L, Falkowski PG (2004) The demise of the marine cyanobacterium, Trichodesmium spp., via an autocatalyzed cell death pathway. Limnol Oceanogr 49:997–1005CrossRefGoogle Scholar
  26. Berman-Frank I, Rosenberg G, Levitan O, Haramaty L, Mari X (2007) Coupling between autocatalytic cell death and transparent exopolymeric particle production in the marine cyanobacterium Trichodesmium. Environ Microbiol 9:1415–1422PubMedCrossRefGoogle Scholar
  27. Bernstein HC, Charania MA, McClure RS, Sadler NC, Melnicki MR, Hill EA, Markillie LM, Nicora CD, Wright AT, Romine MF et al (2015) Multi-omic dynamics associate oxygenic photosynthesis with nitrogenase-mediated H2 production in Cyanothece sp. ATCC 51142. Sci Rep 5:16004Google Scholar
  28. Berube PM, Biller SJ, Kent AG, Berta-Thompson JW, Roggensack SE, Roache-Johnson KH, Ackerman M, Moore LR, Meisel JD, Sher D et al (2015) Physiology and evolution of nitrate acquisition in Prochlorococcus. ISME J 9:1195–1207Google Scholar
  29. Bidle KD, Falkowski PG (2004) Cell death in planktonic, photosynthetic microorganisms. Nat Rev Microbiol 2:643–655PubMedCrossRefGoogle Scholar
  30. Biller SJ, Berube PM, Berta-Thompson JW, Kelly L, Roggensack SE, Awad L, Roache-Johnson KH, Ding H, Giovannoni SJ, Rocap G et al (2014a) Genomes of diverse isolates of the marine cyanobacterium Prochlorococcus. Sci Data 1Google Scholar
  31. Biller SJ, Schubotz F, Roggensack SE, Thompson AW, Summons RE, Chisholm SW (2014b) Bacterial vesicles in marine ecosystems. Science 343:183–186PubMedCrossRefGoogle Scholar
  32. Biller SJ, Berube PM, Lindell D, Chisholm SW (2015) Prochlorococcus: the structure and function of collective diversity. Nat Rev Microbiol 13:13–27PubMedCrossRefGoogle Scholar
  33. Björkman KM, Church MJ, Doggett JK, Karl DM (2015) Differential assimilation of inorganic carbon and leucine by Prochlorococcus in the oligotrophic North Pacific Subtropical Gyre. Front Microbiol 6Google Scholar
  34. Blank CE, Sánchez-Baracaldo P (2010) Timing of morphological and ecological innovations in the cyanobacteria—a key to understanding the rise in atmospheric oxygen. Geobiology 8:1–23PubMedCrossRefGoogle Scholar
  35. Blot N, Wu X-J, Thomas J-C, Zhang J, Garczarek L, Böhm S, Tu J-M, Zhou M, Plöscher M, Eichacker L et al (2009) Phycourobilin in trichromatic phycocyanin from oceanic cyanobacteria is formed post-translationally by a phycoerythrobilin lyase-isomerase. J Biol Chem 284:9290–9298PubMedPubMedCentralCrossRefGoogle Scholar
  36. Blot N, Mella-Flores D, Six C, Le Corguillé G, Boutte C, Peyrat A, Monnier A, Ratin M, Gourvil P, Campbell DA et al (2011) Light history influences the response of the marine cyanobacterium Synechococcus sp. WH7803 to oxidative stress. Plant Physiol 156:1934–1954PubMedPubMedCentralCrossRefGoogle Scholar
  37. Boeuf D, Cottrell MT, Kirchman DL, Lebaron P, Jeanthon C (2013) Summer community structure of aerobic anoxygenic phototrophic bacteria in the western Arctic Ocean. FEMS Microbiol Ecol 85:417–432PubMedCrossRefGoogle Scholar
  38. Bolhuis H, Severin I, Confurius-Guns V, Wollenzien UIA, Stal LJ (2010) Horizontal transfer of the nitrogen fixation gene cluster in the cyanobacterium Microcoleus chthonoplastes. ISME J 4:121–130PubMedCrossRefGoogle Scholar
  39. Bombar D, Heller P, Sanchez-Baracaldo P, Carter BJ, Zehr JP (2014) Comparative genomics reveals surprising divergence of two closely related strains of uncultivated UCYN-A cyanobacteria. ISME J 8:2530–2542PubMedPubMedCentralCrossRefGoogle Scholar
  40. Bonnet S, Tovar-Sánchez A, Panzeca C, Duarte CM, Ortega-Retuerta E, Sañudo-Wilhelmy SA (2013) Geographical gradients of dissolved vitamin B12 in the Mediterranean sea. Front Microbiol 4:126PubMedPubMedCentralCrossRefGoogle Scholar
  41. Bonnet S, Berthelot H, Turk-Kubo K, Fawcett S, Rahav E, l’Helguen S, Berman-Frank I (2016a) Dynamics of N2 fixation and fate of diazotroph-derived nitrogen in a low nutrient low chlorophyll ecosystem: results from the VAHINE mesocosm experiment (New Caledonia). Biogeosciences 13:2653–2673Google Scholar
  42. Bonnet S, Moutin T, Rodier M, Grisoni JM, Louis F, Folcher E, Bourgeois B, Boré JM, Renaud M (2016b) Introduction to the project VAHINE: VAriability of vertical and tropHIc transfer of fixed N2 in the south wEst Pacific. Biogeosci Discuss. doi: 10.5194/bg-2015-615 Google Scholar
  43. Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, Maheswari U, Martens C, Maumus F, Otillar RP et al (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244PubMedCrossRefGoogle Scholar
  44. Burki F, Keeling PJ (2014) Rhizaria. Curr Biol CB 24:R103–R107PubMedCrossRefGoogle Scholar
  45. Cabello AM, Cornejo-Castillo FM, Raho N, Blasco D, Vidal M, Audic S, de Vargas C, Latasa M, Acinas SG, Massana R (2015) Global distribution and vertical patterns of a prymnesiophyte-cyanobacteria obligate symbiosis. ISME J. doi: 10.1038/ismej.2015.147 PubMedGoogle Scholar
  46. Canfield DE, Glazer AN, Falkowski PG (2010) The evolution and future of Earth’s nitrogen cycle. Science 330:192–196PubMedCrossRefGoogle Scholar
  47. Capone DG (1997) Trichodesmium, a globally significant marine cyanobacterium. Science 276:1221–1229CrossRefGoogle Scholar
  48. Carpenter EJ, Foster RA (2002) Marine cyanobacterial symbioses. In: Cyanobacteria in symbiosis. Springer, Berlin, pp 11–17Google Scholar
  49. Carpenter EJ, Janson S (2000) Intracellular cyanobacterial symbionts in the marine diatom Climacodium frauenfeldianum (Bacillariophyceae). J Phycol 36:540–544CrossRefGoogle Scholar
  50. Carpenter EJ, Price CC (1976) Marine Oscillatoria (Trichodesmium): explanation for aerobic nitrogen fixation without heterocysts. Science 191:1278–1280PubMedCrossRefGoogle Scholar
  51. Červený J, Sinetova MA, Valledor L, Sherman LA, Nedbal L (2013) Ultradian metabolic rhythm in the diazotrophic cyanobacterium Cyanothece sp. ATCC 51142. Proc Natl Acad Sci USA 110:13210–13215PubMedPubMedCentralCrossRefGoogle Scholar
  52. Chandler JW, Lin Y, Gainer PJ, Post AF, Johnson ZI, Zinser ER (2016) Variable but persistent coexistence of Prochlorococcus ecotypes along temperature gradients in the ocean’s surface mixed layer. Microbiol Rep, Environ. doi: 10.1111/1758-2229.12378 Google Scholar
  53. Chappell PD, Whitney LP, Wallace JR, Darer AI, Jean-Charles S, Jenkins BD (2015) Genetic indicators of iron limitation in wild populations of Thalassiosira oceanica from the northeast Pacific ocean. ISME J 9:592–602PubMedPubMedCentralCrossRefGoogle Scholar
  54. Chen F, Wang K, Kan J, Suzuki MT, Wommack KE (2006) Diverse and unique picocyanobacteria in Chesapeake Bay, revealed by 16S-23S rRNA internal transcribed spacer sequences. Appl Environ Microbiol 72:2239–2243PubMedPubMedCentralCrossRefGoogle Scholar
  55. Chisholm SW, Olson RJ, Zettler ER, Goericke R, Waterbury JB, Welschmeyer NA (1988) A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature 334:340–343CrossRefGoogle Scholar
  56. Chou YL, Lee YL, Yen CC, Chen LFO, Lee LC, Shaw JF (2015) A novel recombinant chlorophyllase from cyanobacterium Cyanothece sp. ATCC 51142 for the production of bacteriochlorophyllide a. Biotechnol Appl Biochem. doi: 10.1002/bab.1380 PubMedGoogle Scholar
  57. Christie-Oleza JA, Armengaud J, Guerin P, Scanlan DJ (2015a) Functional distinctness in the exoproteomes of marine Synechococcus. Environ Microbiol 17:3781–3794PubMedCrossRefGoogle Scholar
  58. Christie-Oleza JA, Scanlan DJ, Armengaud J (2015b) “You produce while I clean up”, a strategy revealed by exoproteomics during Synechococcus-Roseobacter interactions. Proteomics 15:3454–3462PubMedCrossRefGoogle Scholar
  59. Coelho SM, Simon N, Ahmed S, Cock JM, Partensky F (2013) Ecological and evolutionary genomics of marine photosynthetic organisms. Mol Ecol 22:867–907PubMedCrossRefGoogle Scholar
  60. Coleman ML, Chisholm SW (2007) Code and context: Prochlorococcus as a model for cross-scale biology. Trends Microbiol 15:398–407PubMedCrossRefGoogle Scholar
  61. Coleman ML, Sullivan MB, Martiny AC, Steglich C, Barry K, DeLong EF, Chisholm SW (2006) Genomic islands and the ecology and evolution of Prochlorococcus. Science 311:1768–1770PubMedCrossRefGoogle Scholar
  62. Compaoré J, Stal LJ (2010) Oxygen and the light-dark cycle of nitrogenase activity in two unicellular cyanobacteria. Environ Microbiol 12:54–62PubMedCrossRefGoogle Scholar
  63. Cottrell MT, Kirchman DL (2009) Photoheterotrophic microbes in the Arctic ocean in summer and winter. Appl Environ Microbiol 75:4958–4966PubMedPubMedCentralCrossRefGoogle Scholar
  64. Cottrell MT, Ras J, Kirchman DL (2010) Bacteriochlorophyll and community structure of aerobic anoxygenic phototrophic bacteria in a particle-rich estuary. ISME J 4:945–954PubMedCrossRefGoogle Scholar
  65. Coutinho F, Tschoeke DA, Thompson F, Thompson C (2016) Comparative genomics of Synechococcus and proposal of the new genus Parasynechococcus. PeerJ 4:e1522PubMedPubMedCentralCrossRefGoogle Scholar
  66. Crowe SA, Døssing LN, Beukes NJ, Bau M, Kruger SJ, Frei R, Canfield DE (2013) Atmospheric oxygenation three billion years ago. Nature 501:535–538PubMedCrossRefGoogle Scholar
  67. Curtis BA, Tanifuji G, Burki F, Gruber A, Irimia M, Maruyama S, Arias MC, Ball SG, Gile GH, Hirakawa Y et al (2012) Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature 492:59–65PubMedCrossRefGoogle Scholar
  68. Daboussi F, Leduc S, Maréchal A, Dubois G, Guyot V, Perez-Michaut C, Amato A, Falciatore A, Juillerat A, Beurdeley M et al (2014) Genome engineering empowers the diatom Phaeodactylum tricornutum for biotechnology. Nat Commun 5:3831PubMedCrossRefGoogle Scholar
  69. Davis CS, McGillicuddy DJ (2006) Transatlantic abundance of the N2-fixing colonial cyanobacterium Trichodesmium. Science 312:1517–1520PubMedCrossRefGoogle Scholar
  70. de Vargas C, Audic S, Henry N, Decelle J, Mahé F, Logares R, Lara E, Berney C, Le Bescot N, Probert I et al (2015) Eukaryotic plankton diversity in the sunlit ocean. Science 348:1261605PubMedCrossRefGoogle Scholar
  71. Decelle J, Romac S, Stern RF, Bendif EM, Zingone A, Audic S, Guiry MD, Guillou L, Tessier D, Le Gall F et al (2015) PhytoREF: a reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy. Mol Ecol Resour 15:1435–1445PubMedCrossRefGoogle Scholar
  72. DeLong EF, Béjà O (2010) The light-driven proton pump proteorhodopsin enhances bacterial survival during tough times. PLoS Biol 8:e1000359PubMedPubMedCentralCrossRefGoogle Scholar
  73. Desbois AP, Mearns-Spragg A, Smith VJ (2009) A fatty acid from the diatom Phaeodactylum tricornutum is antibacterial against diverse bacteria including multi-resistant Staphylococcus aureus (MRSA). Mar Biotechnol 11:45–52PubMedCrossRefGoogle Scholar
  74. Deutsch C, Sarmiento JL, Sigman DM, Gruber N, Dunne JP (2007) Spatial coupling of nitrogen inputs and losses in the ocean. Nature 445:163–167PubMedCrossRefGoogle Scholar
  75. Douglas S, Zauner S, Fraunholz M, Beaton M, Penny S, Deng LT, Wu X, Reith M, Cavalier-Smith T, Maier UG (2001) The highly reduced genome of an enslaved algal nucleus. Nature 410:1091–1096PubMedCrossRefGoogle Scholar
  76. Doulatov S, Hodes A, Dai L, Mandhana N, Liu M, Deora R, Simons RW, Zimmerly S, Miller JF (2004) Tropism switching in Bordetella bacteriophage defines a family of diversity-generating retroelements. Nature 431:476–481PubMedCrossRefGoogle Scholar
  77. Dufresne A, Salanoubat M, Partensky F, Artiguenave F, Axmann IM, Barbe V, Duprat S, Galperin MY, Koonin EV, Le Gall F et al (2003) Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome. Proc Natl Acad Sci USA 100:10020–10025PubMedPubMedCentralCrossRefGoogle Scholar
  78. Dufresne A, Garczarek L, Partensky F (2005) Accelerated evolution associated with genome reduction in a free-living prokaryote. Genome Biol 6:R14PubMedPubMedCentralCrossRefGoogle Scholar
  79. Dufresne A, Ostrowski M, Scanlan DJ, Garczarek L, Mazard S, Palenik BP, Paulsen IT, de Marsac NT, Wincker P, Dossat C et al (2008) Unraveling the genomic mosaic of a ubiquitous genus of marine cyanobacteria. Genome Biol 9:R90PubMedPubMedCentralCrossRefGoogle Scholar
  80. Dugdale RC, Goering JJ (1967) Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol Oceanogr 12:196–206CrossRefGoogle Scholar
  81. Dugdale RC, Menzel DW, Ryther JH (1961) Nitrogen fixation in the Sargasso sea. Deep Sea Res 1953(7):297–300CrossRefGoogle Scholar
  82. Dupouy C, Petit M, Dandonneau Y (1988) Satellite detected cyanobacteria bloom in the southwestern tropical Pacific. Int J Remote Sens 9:389–396CrossRefGoogle Scholar
  83. Ehrenberg CG (1830) Neue Beobachlungen über blutartige Erscheinungen in Aegypten, Arabien und Sibirien, nebst einer Uebersicht und Kritik der früher bekannnten. Ann Phys 94:477–514CrossRefGoogle Scholar
  84. Eiler A (2006) Evidence for the ubiquity of mixotrophic bacteria in the upper ocean: implications and consequences. Appl Environ Microbiol 72:7431–7437PubMedPubMedCentralCrossRefGoogle Scholar
  85. El-Shehawy R, Lugomela C, Ernst A, Bergman B (2003) Diurnal expression of hetR and diazocyte development in the filamentous non-heterocystous cyanobacterium Trichodesmium erythraeum. Microbiol Read Engl 149:1139–1146CrossRefGoogle Scholar
  86. Evans C, Gómez-Pereira PR, Martin AP, Scanlan DJ, Zubkov MV (2015) Photoheterotrophy of bacterioplankton is ubiquitous in the surface oligotrophic ocean. Prog Oceanogr 135:139–145CrossRefGoogle Scholar
  87. Falkowski PG (1997) Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387:272–275CrossRefGoogle Scholar
  88. Falkowski PG, Raven JA (2013) Aquatic photosynthesis, 2nd edn. Princeton University Press, PrincetonGoogle Scholar
  89. Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, Taylor FJR (2004) The evolution of modern eukaryotic phytoplankton. Science 305:354–360PubMedCrossRefGoogle Scholar
  90. Farrant GK, Doré D, Cornejo-Castillo FM, Partensky F, Ratin M, Ostrowski M, Pitt F, Wincker P, Scanlan DJ, Iudicone D, Acinas SG, Garczarek L (2016) Delineating ecologically significant taxonomic units from global patterns of marine picocyanobacteria. Proc Natl Acad Sci USA (in press)Google Scholar
  91. Ferrera I, Sebastian M, Acinas SG, Gasol JM (2015) Prokaryotic functional gene diversity in the sunlit ocean: stumbling in the dark. Curr Opin Microbiol 25:33–39PubMedCrossRefGoogle Scholar
  92. Fewer DP, Jokela J, Paukku E, Österholm J, Wahlsten M, Permi P, Aitio O, Rouhiainen L, Gomez-Saez GV, Sivonen K (2013) New structural variants of aeruginosin produced by the toxic bloom forming cyanobacterium Nodularia spumigena. PLoS ONE 8:e73618PubMedPubMedCentralCrossRefGoogle Scholar
  93. Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240PubMedCrossRefGoogle Scholar
  94. Flombaum P, Gallegos JL, Gordillo RA, Rincón J, Zabala LL, Jiao N, Karl DM, Li WKW, Lomas MW, Veneziano D et al (2013) Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc Natl Acad Sci USA 110:9824–9829PubMedPubMedCentralCrossRefGoogle Scholar
  95. Foster RA, Zehr JP (2006) Characterization of diatom-cyanobacteria symbioses on the basis of nifH, hetR and 16S rRNA sequences. Environ Microbiol 8:1913–1925PubMedCrossRefGoogle Scholar
  96. Foster RA, Subramaniam A, Zehr JP (2009) Distribution and activity of diazotrophs in the Eastern Equatorial Atlantic. Environ Microbiol 11:741–750PubMedPubMedCentralCrossRefGoogle Scholar
  97. Foster RA, Goebel NL, Zehr JP (2010) Isolation of Calothrix rhizosoleniae (cyanobacteria) strain sc01 from Chaetoceros (bacillariophyta) spp. diatoms of the subtropical North Pacific Ocean. J Phycol 46:1028–1037CrossRefGoogle Scholar
  98. Foster RA, Kuypers MM, Vagner T, Paerl RW, Musat N, Zehr JP (2011) Nitrogen fixation and transfer in open ocean diatom—cyanobacterial symbioses. ISME J 5:1484–1493PubMedPubMedCentralCrossRefGoogle Scholar
  99. Foster RA, Sztejrenszus S, Kuypers MM (2013) Measuring carbon and N2 fixation in field populations of colonial and free-living unicellular cyanobacteria using nanometer-scale secondary ion mass spectrometry1. J Phycol 49:502–516PubMedCrossRefGoogle Scholar
  100. Franklin DJ, Brussaard CP, Berges JA (2006) What is the role and nature of programmed cell death in phytoplankton ecology? Eur J Phycol 41:1–14CrossRefGoogle Scholar
  101. Fu W, Wichuk K, Brynjólfsson S (2015) Developing diatoms for value-added products: challenges and opportunities. New Biotechnol 32:547–551CrossRefGoogle Scholar
  102. Fuhrman JA, Schwalbach MS, Stingl U (2008) Proteorhodopsins: an array of physiological roles? Nat Rev Microbiol 6:488–494PubMedGoogle Scholar
  103. Georg J, Dienst D, Schürgers N, Wallner T, Kopp D, Stazic D, Kuchmina E, Klähn S, Lokstein H, Hess WR et al (2014) The small regulatory RNA SyR1/PsrR1 controls photosynthetic functions in cyanobacteria. Plant Cell 26:3661–3679PubMedPubMedCentralCrossRefGoogle Scholar
  104. Goebel NL, Turk KA, Achilles KM, Paerl R, Hewson I, Morrison AE, Montoya JP, Edwards CA, Zehr JP (2010) Abundance and distribution of major groups of diazotrophic cyanobacteria and their potential contribution to N2 fixation in the tropical Atlantic Ocean. Environ Microbiol 12:3272–3289PubMedCrossRefGoogle Scholar
  105. Goericke R, Repeta DJ (1992) The pigments of Prochlorococcus marinus: the presence of divinylchlorophyll a and b in a marine procaryote. Limnol Oceanogr 37:425–433CrossRefGoogle Scholar
  106. Golubic S, Seong-Joo L (1999) Early cyanobacterial fossil record: preservation, palaeoenvironments and identification. Eur J Phycol 34:339–348CrossRefGoogle Scholar
  107. Gómez-Baena G, López-Lozano A, Gil-Martínez J, Lucena JM, Diez J, Candau P, García-Fernández JM (2008) Glucose uptake and its effect on gene expression in Prochlorococcus. PLoS ONE 3:e3416Google Scholar
  108. Gómez-Consarnau L, Akram N, Lindell K, Pedersen A, Neutze R, Milton DL, González JM, Pinhassi J (2010) Proteorhodopsin phototrophy promotes survival of marine bacteria during starvation. PLoS Biol 8:e1000358PubMedPubMedCentralCrossRefGoogle Scholar
  109. Gómez-Pereira PR, Hartmann M, Grob C, Tarran GA, Martin AP, Fuchs BM, Scanlan DJ, Zubkov MV (2013) Comparable light stimulation of organic nutrient uptake by SAR11 and Prochlorococcus in the North Atlantic subtropical gyre. ISME J 7:603–614PubMedPubMedCentralCrossRefGoogle Scholar
  110. Gomont M (1892) Monographie des Oscillariées (Nostocacées Homocystées). Deuxième partie. - Lyngbyées. Ann Sci Nat Bot Sér 7(16):91–264Google Scholar
  111. Guidi L, Chaffron S, Bittner L, Eveillard D, Larhlimi A, Roux S et al (2016) Plankton networks driving carbon export in the global ocean. Nature 532:465–4701Google Scholar
  112. Guo H, Tse LV, Barbalat R, Sivaamnuaiphorn S, Xu M, Doulatov S, Miller JF (2008) Diversity-generating retroelement homing regenerates target sequences for repeated rounds of codon rewriting and protein diversification. Mol Cell 31:813–823PubMedPubMedCentralCrossRefGoogle Scholar
  113. Hackenberg C, Engelhardt A, Matthijs HCP, Wittink F, Bauwe H, Kaplan A, Hagemann M (2009) Photorespiratory 2-phosphoglycolate metabolism and photoreduction of O2 cooperate in high-light acclimation of Synechocystis sp. strain PCC 6803. Planta 230:625–637PubMedPubMedCentralCrossRefGoogle Scholar
  114. Hagino K, Onuma R, Kawachi M, Horiguchi T (2013) Discovery of an endosymbiotic nitrogen-fixing cyanobacterium UCYN-A in Braarudosphaera bigelowii (Prymnesiophyceae). PLoS ONE 8:e81749PubMedPubMedCentralCrossRefGoogle Scholar
  115. Hatosy SM, Martiny AC (2015) The ocean as a global reservoir of antibiotic resistance genes. Appl Environ Microbiol 81:7593–7599PubMedPubMedCentralCrossRefGoogle Scholar
  116. Haverkamp T, Acinas SG, Doeleman M, Stomp M, Huisman J, Stal LJ (2008) Diversity and phylogeny of Baltic sea picocyanobacteria inferred from their ITS and phycobiliprotein operons. Environ Microbiol 10:174–188PubMedGoogle Scholar
  117. Hess WR, Partensky F, van der Staay GW, Garcia-Fernandez JM, Börner T, Vaulot D (1996) Coexistence of phycoerythrin and a chlorophyll a/b antenna in a marine prokaryote. Proc Natl Acad Sci USA 93:11126–11130PubMedPubMedCentralCrossRefGoogle Scholar
  118. Hess WR, Steglich C, Lichtlé C, Partensky F (1999) Phycoerythrins of the oxyphotobacterium Prochlorococcus marinus are associated to the thylakoid membrane and are encoded by a single large gene cluster. Plant Mol Biol 40:507–521PubMedCrossRefGoogle Scholar
  119. Hess WR, Rocap G, Ting CS, Larimer F, Stilwagen S, Lamerdin J, Chisholm SW (2001) The photosynthetic apparatus of Prochlorococcus: insights through comparative genomics. Photosynth Res 70:53–71PubMedCrossRefGoogle Scholar
  120. Hewson I, Govil SR, Capone DG, Carpenter EJ, Fuhrman JA (2004) Evidence of Trichodesmium viral lysis and potential significance for biogeochemical cycling in the oligotrophic ocean. Aquat Microb Ecol 36:1–8CrossRefGoogle Scholar
  121. Hilton JA, Foster RA, Tripp HJ, Carter BJ, Zehr JP, Villareal TA (2013) Genomic deletions disrupt nitrogen metabolism pathways of a cyanobacterial diatom symbiont. Nat Commun 4:1767PubMedPubMedCentralCrossRefGoogle Scholar
  122. Huang S, Wilhelm SW, Harvey HR, Taylor K, Jiao N, Chen F (2012) Novel lineages of Prochlorococcus and Synechococcus in the global oceans. ISME J 6:285–297PubMedPubMedCentralCrossRefGoogle Scholar
  123. Hubas C, Jesus B, Passarelli C, Jeanthon C (2011) Tools providing new insight into coastal anoxygenic purple bacterial mats: review and perspectives. Res Microbiol 162:858–868PubMedCrossRefGoogle Scholar
  124. Humily F, Partensky F, Six C, Farrant GK, Ratin M, Marie D, Garczarek L (2013) A gene island with two possible configurations is involved in chromatic acclimation in marine Synechococcus. PLoS ONE 8:e84459PubMedPubMedCentralCrossRefGoogle Scholar
  125. Hynes AM, Webb EA, Doney SC, Waterbury JB (2012) Comparison of cultured Trichodesmium (cyanophyceae) with species characterized from the field. J Phycol 48:196–210PubMedCrossRefGoogle Scholar
  126. Janson S, Wouters J, Bergman B, Carpenter EJ (1999) Host specificity in the Richelia-diatom symbiosis revealed by hetR gene sequence analysis. Environ Microbiol 1:431–438PubMedCrossRefGoogle Scholar
  127. Jardillier L, Zubkov MV, Pearman J, Scanlan DJ (2010) Significant CO2 fixation by small prymnesiophytes in the subtropical and tropical northeast Atlantic ocean. ISME J 4:1180–1192PubMedCrossRefGoogle Scholar
  128. Jiao N, Luo T, Zhang R, Yan W, Lin Y, Johnson ZI, Tian J, Yuan D, Yang Q, Zheng Q et al (2014) Presence of Prochlorococcus in the aphotic waters of the western Pacific ocean. Biogeosciences 11:2391–2400CrossRefGoogle Scholar
  129. Johnson ZI, Zinser ER, Coe A, McNulty NP, Woodward EMS, Chisholm SW (2006) Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311:1737–1740PubMedCrossRefGoogle Scholar
  130. Jones AC, Monroe EA, Podell S, Hess WR, Klages S, Esquenazi E, Niessen S, Hoover H, Rothmann M, Lasken RS et al (2011) Genomic insights into the physiology and ecology of the marine filamentous cyanobacterium Lyngbya majuscula. Proc Natl Acad Sci USA 108:8815–8820PubMedPubMedCentralCrossRefGoogle Scholar
  131. Karl D, Letelier R, Tupas L, Dore J, Christian J, Hebel D (1997) The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific ocean. Nature 388:533–538CrossRefGoogle Scholar
  132. Karl D, Michaels A, Bergman B, Capone D, Carpenter E, Letelier R, Lipschultz F, Paerl H, Sigman D, Stal L (2002) Dinitrogen fixation in the world’s oceans. Biogeochemistry 57–58:47–98CrossRefGoogle Scholar
  133. Kashtan N, Roggensack SE, Rodrigue S, Thompson JW, Biller SJ, Coe A, Ding H, Marttinen P, Malmstrom RR, Stocker R et al (2014) Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science 344:416–420PubMedCrossRefGoogle Scholar
  134. Kazamia E, Czesnick H, Nguyen TTV, Croft MT, Sherwood E, Sasso S, Hodson SJ, Warren MJ, Smith AG (2012) Mutualistic interactions between vitamin B12-dependent algae and heterotrophic bacteria exhibit regulation. Environ Microbiol 14:1466–1476PubMedCrossRefGoogle Scholar
  135. Keeling PJ, Burki F, Wilcox HM, Allam B, Allen EE, Amaral-Zettler LA, Armbrust EV, Archibald JM, Bharti AK, Bell CJ et al (2014) The marine microbial eukaryote transcriptome sequencing project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol 12(6):e1001889PubMedPubMedCentralCrossRefGoogle Scholar
  136. Kent AG, Dupont CL, Yooseph S, Martiny AC (2016) Global biogeography of Prochlorococcus genome diversity in the surface ocean. ISME J. doi: 10.1038/ismej.2015.265 Google Scholar
  137. Kettler GC, Martiny AC, Huang K, Zucker J, Coleman ML, Rodrigue S, Chen F, Lapidus A, Ferriera S, Johnson J et al (2007) Patterns and implications of gene gain and loss in the evolution of Prochlorococcus. PLoS Genet 3:e231PubMedPubMedCentralCrossRefGoogle Scholar
  138. Kim E, Harrison JW, Sudek S, Jones MDM, Wilcox HM, Richards TA, Worden AZ, Archibald JM (2011) Newly identified and diverse plastid-bearing branch on the eukaryotic tree of life. Proc Natl Acad Sci USA 108:1496–1500PubMedPubMedCentralCrossRefGoogle Scholar
  139. Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  140. Kirschvink JL, Kopp RE (2008) Palaeoproterozoic ice houses and the evolution of oxygen-mediating enzymes: the case for a late origin of photosystem II. Philos Trans R Soc B Biol Sci 363:2755–2765CrossRefGoogle Scholar
  141. Klähn S, Steglich C, Hess WR, Hagemann M (2010) Glucosylglycerate: a secondary compatible solute common to marine cyanobacteria from nitrogen-poor environments. Environ Microbiol 12:83–94PubMedCrossRefGoogle Scholar
  142. Klähn S, Baumgartner D, Pfreundt U, Voigt K, Schön V, Steglich C, Hess WR (2014) Alkane biosynthesis genes in cyanobacteria and their transcriptional organization. Front Bioeng Biotechnol 2:24PubMedPubMedCentralCrossRefGoogle Scholar
  143. Klähn S, Schaal C, Georg J, Baumgartner D, Knippen G, Hagemann M, Muro-Pastor AM, Hess WR (2015) The sRNA NsiR4 is involved in nitrogen assimilation control in cyanobacteria by targeting glutamine synthetase inactivating factor IF7. Proc Natl Acad Sci USA 112:E6243–E6252PubMedPubMedCentralCrossRefGoogle Scholar
  144. Knapp AN, Fawcett SE, Martínez-Garcia A, Leblond N, Moutin T, Bonnet S (2015) Nitrogen isotopic evidence for a shift from nitrate-to diazotroph-fueled export production in VAHINE mesocosm experiments. Biogeosci Discuss 12:19901–19939CrossRefGoogle Scholar
  145. Knoll AH, Semikhatov MA (1998) The genesis and time distribution of two distinctive proterozoic stromatolite microstructures. Palaios 13:408–422CrossRefGoogle Scholar
  146. Koblížek M (2015) Ecology of aerobic anoxygenic phototrophs in aquatic environments. FEMS Microbiol Rev 39:854–870PubMedCrossRefGoogle Scholar
  147. Konstantinidis KT, Tiedje JM (2005) Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA 102:2567–2572PubMedPubMedCentralCrossRefGoogle Scholar
  148. Kopf M, Hess WR (2015) Regulatory RNAs in photosynthetic cyanobacteria. FEMS Microbiol Rev 39:301–315PubMedCrossRefGoogle Scholar
  149. Kopf M, Möke F, Bauwe H, Hess WR, Hagemann M (2015) Expression profiling of the bloom-forming cyanobacterium Nodularia spumigena CCY9414 under high light and oxidative stress conditions. ISME J 9:2139–2152PubMedCrossRefGoogle Scholar
  150. Krumhardt KM, Callnan K, Roache-Johnson K, Swett T, Robinson D, Reistetter EN, Saunders JK, Rocap G, Moore LR (2013) Effects of phosphorus starvation versus limitation on the marine cyanobacterium Prochlorococcus MED4 I: uptake physiology. Environ Microbiol 15:2114–2128PubMedCrossRefGoogle Scholar
  151. Krupke A, Lavik G, Halm H, Fuchs BM, Amann RI, Kuypers MMM (2014) Distribution of a consortium between unicellular algae and the N2 fixing cyanobacterium UCYN-A in the North Atlantic ocean. Environ Microbiol 16:3153–3167PubMedCrossRefGoogle Scholar
  152. Krupke A, Mohr W, LaRoche J, Fuchs BM, Amann RI, Kuypers MMM (2015) The effect of nutrients on carbon and nitrogen fixation by the UCYN-A-haptophyte symbiosis. ISME J 9:1635–1647PubMedCrossRefGoogle Scholar
  153. Larkin AA, Blinebry SK, Howes C, Lin Y, Loftus SE, Schmaus CA, Zinser ER, Johnson ZI (2016) Niche partitioning and biogeography of high light adapted Prochlorococcus across taxonomic ranks in the North Pacific. ISME J. doi: 10.1038/ismej.2015.244 PubMedGoogle Scholar
  154. Larsson J, Nylander JA, Bergman B (2011) Genome fluctuations in cyanobacteria reflect evolutionary, developmental and adaptive traits. BMC Evol Biol 11:187PubMedPubMedCentralCrossRefGoogle Scholar
  155. Larsson J, Celepli N, Ininbergs K, Dupont CL, Yooseph S, Bergman B, Ekman M (2014) Picocyanobacteria containing a novel pigment gene cluster dominate the brackish water Baltic sea. ISME J 8:1892–1903PubMedPubMedCentralCrossRefGoogle Scholar
  156. Lavin P, González B, Santibáñez JF, Scanlan DJ, Ulloa O (2010) Novel lineages of Prochlorococcus thrive within the oxygen minimum zone of the eastern tropical South Pacific. Environ Microbiol Rep 2:728–738PubMedCrossRefGoogle Scholar
  157. Lea-Smith DJ, Biller SJ, Davey MP, Cotton CAR, Perez Sepulveda BM, Turchyn AV, Scanlan DJ, Smith AG, Chisholm SW, Howe CJ (2015) Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle. Proc Natl Acad Sci USA 112:13591–13596PubMedPubMedCentralCrossRefGoogle Scholar
  158. Liu M, Deora R, Doulatov SR, Gingery M, Eiserling FA, Preston A, Maskell DJ, Simons RW, Cotter PA, Parkhill J et al (2002) Reverse transcriptase-mediated tropism switching in Bordetella bacteriophage. Science 295:2091–2094PubMedCrossRefGoogle Scholar
  159. Liu L, Budnjo A, Jokela J, Haug BE, Fewer DP, Wahlsten M, Rouhiainen L, Permi P, Fossen T, Sivonen K (2015) Pseudoaeruginosins, nonribosomal peptides in Nodularia spumigena. ACS Chem Biol 10:725–733PubMedCrossRefGoogle Scholar
  160. Luo Y-W, Doney SC, Anderson LA, Benavides M, Berman-Frank I, Bode A, Bonnet S, Boström KH, Böttjer D, Capone DG et al (2012) Database of diazotrophs in global ocean: abundance, biomass and nitrogen fixation rates. Earth Syst Sci Data 4:47–73CrossRefGoogle Scholar
  161. Lyons TW, Reinhard CT, Planavsky NJ (2014) The rise of oxygen in Earth/’s early ocean and atmosphere. Nature 506:307–315PubMedCrossRefGoogle Scholar
  162. Mackey KR, Paytan A, Caldeira K, Grossman AR, Moran D, McIlvin M, Saito MA (2013) Effect of temperature on photosynthesis and growth in marine Synechococcus spp. Plant Physiol 163:815–829PubMedPubMedCentralCrossRefGoogle Scholar
  163. Mahaffey C, Michaels AF, Capone DG (2005) The conundrum of marine N2 fixation. Am J Sci 305:546–595CrossRefGoogle Scholar
  164. Malmstrom RR, Coe A, Kettler GC, Martiny AC, Frias-Lopez J, Zinser ER, Chisholm SW (2010) Temporal dynamics of Prochlorococcus ecotypes in the Atlantic and Pacific oceans. ISME J 4:1252–1264PubMedCrossRefGoogle Scholar
  165. Malmstrom RR, Rodrigue S, Huang KH, Kelly L, Kern SE, Thompson A, Roggensack S, Berube PM, Henn MR, Chisholm SW (2013) Ecology of uncultured Prochlorococcus clades revealed through single-cell genomics and biogeographic analysis. ISME J 7:184–198PubMedPubMedCentralCrossRefGoogle Scholar
  166. Man D, Wang W, Sabehi G, Aravind L, Post AF, Massana R, Spudich EN, Spudich JL, Béjà O (2003) Diversification and spectral tuning in marine proteorhodopsins. EMBO J 22:1725–1731PubMedPubMedCentralCrossRefGoogle Scholar
  167. Mandal S, Rath J (2015) Secondary metabolites of cyanobacteria and drug development. In: Extremophilic cyanobacteria for novel drug development. Springer, Berlin, pp 23–43Google Scholar
  168. Marchetti A, Schruth DM, Durkin CA, Parker MS, Kodner RB, Berthiaume CT, Morales R, Allen AE, Armbrust EV (2012) Comparative metatranscriptomics identifies molecular bases for the physiological responses of phytoplankton to varying iron availability. Proc Natl Acad Sci USA 109:E317–E325PubMedPubMedCentralCrossRefGoogle Scholar
  169. Mareš J, Hrouzek P, Kaňa R, Ventura S, Strunecký O, Komárek J (2013) The primitive thylakoid-less cyanobacterium Gloeobacter Is a common rock-dwelling organism. PLoS ONE 8:e66323PubMedPubMedCentralCrossRefGoogle Scholar
  170. Marin B, Melkonian M (2010) Molecular phylogeny and classification of the Mamiellophyceae class. nov. (Chlorophyta) based on sequence comparisons of the nuclear- and plastid-encoded rRNA operons. Protist 161:304–336PubMedCrossRefGoogle Scholar
  171. Martiny AC, Coleman ML, Chisholm SW (2006) Phosphate acquisition genes in Prochlorococcus ecotypes: evidence for genome-wide adaptation. Proc Natl Acad Sci USA 103:12552–12557Google Scholar
  172. Martiny AC, Huang Y, Li W (2009a) Occurrence of phosphate acquisition genes in Prochlorococcus cells from different ocean regions. Environ Microbiol 11:1340–1347Google Scholar
  173. Martiny AC, Kathuria S, Berube PM (2009b) Widespread metabolic potential for nitrite and nitrate assimilation among Prochlorococcus ecotypes. Proc Natl Acad Sci USA 106:10787–10792PubMedPubMedCentralCrossRefGoogle Scholar
  174. Martiny JB, Jones SE, Lennon JT, Martiny AC (2015) Microbiomes in light of traits: a phylogenetic perspective. Science 350:aac9323Google Scholar
  175. Matsumoto M, Sugiyama H, Maeda Y, Sato R, Tanaka T, Matsunaga T (2010) Marine diatom, Navicula sp. strain JPCC DA0580 and marine green alga, Chlorella sp. strain NKG400014 as potential sources for biodiesel production. Appl Biochem Biotechnol 161:483–490PubMedCrossRefGoogle Scholar
  176. Mazard S, Ostrowski M, Partensky F, Scanlan DJ (2012) Multi-locus sequence analysis, taxonomic resolution and biogeography of marine Synechococcus. Environ Microbiol 14:372–386PubMedCrossRefGoogle Scholar
  177. Mazur-Marzec H, Kaczkowska MJ, Blaszczyk A, Akcaalan R, Spoof L, Meriluoto J (2012) Diversity of peptides produced by Nodularia spumigena from various geographical regions. Mar Drugs 11:1–19PubMedPubMedCentralCrossRefGoogle Scholar
  178. McCarren J, Brahamsha B (2007) SwmB, a 1.12-megadalton protein that is required for nonflagellar swimming motility in Synechococcus. J Bacteriol 189:1158–1162PubMedPubMedCentralCrossRefGoogle Scholar
  179. McKie-Krisberg ZM, Sanders RW (2014) Phagotrophy by the picoeukaryotic green alga Micromonas: implications for Arctic oceans. ISME J 8:1953–1961PubMedPubMedCentralCrossRefGoogle Scholar
  180. Mella-Flores D, Six C, Ratin M, Partensky F, Boutte C, Le Corguillé G, Marie D, Blot N, Gourvil P, Kolowrat C et al (2012) Prochlorococcus and Synechococcus have evolved different adaptive mechanisms to cope with light and UV stress. Front MicrobiolGoogle Scholar
  181. Melnicki MR, Pinchuk GE, Hill EA, Kucek LA, Fredrickson JK, Konopka A, Beliaev AS (2012) Sustained H(2) production driven by photosynthetic water splitting in a unicellular cyanobacterium. mBio 3:e00197–e00112Google Scholar
  182. Mevers E, Matainaho T, Allara’ M, Di Marzo V, Gerwick WH (2014) Mooreamide A: a cannabinomimetic lipid from the marine cyanobacterium Moorea bouillonii. Lipids 49:1127–1132Google Scholar
  183. Möke F, Wasmund N, Bauwe H, Hagemann M (2013) Salt acclimation of Nodularia spumigena CCY9414–a cyanobacterium adapted to brackish water. Aquat Microb Ecol 70:207–214CrossRefGoogle Scholar
  184. Montoya JP, Holl CM, Zehr JP, Hansen A, Villareal TA, Capone DG (2004) High rates of N2 fixation by unicellular diazotrophs in the oligotrophic Pacific ocean. Nature 430:1027–1032PubMedCrossRefGoogle Scholar
  185. Moore LR, Rocap G, Chisholm SW (1998) Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 393:464–467PubMedCrossRefGoogle Scholar
  186. Moore JK, Doney SC, Glover DM, Fung IY (2001) Iron cycling and nutrient-limitation patterns in surface waters of the World ocean. Deep Sea Res Part II Top Stud Oceanogr 49:463–507CrossRefGoogle Scholar
  187. Moore LR, Coe A, Zinser ER, Saito MA, Sullivan MB, Lindell D, Frois-Moniz K, Waterbury J, Chisholm SW (2007) Culturing the marine cyanobacterium Prochlorococcus. Limnol Oceanogr Methods 5:353–362CrossRefGoogle Scholar
  188. Moore RB, Oborník M, Janouskovec J, Chrudimský T, Vancová M, Green DH, Wright SW, Davies NW, Bolch CJS, Heimann K et al (2008) A photosynthetic alveolate closely related to apicomplexan parasites. Nature 451:959–963PubMedCrossRefGoogle Scholar
  189. Moore CM, Mills MM, Arrigo KR, Berman-Frank I, Bopp L, Boyd PW, Galbraith ED, Geider RJ, Guieu C, Jaccard SL et al (2013) Processes and patterns of oceanic nutrient limitation. Nat Geosci 6:701–710CrossRefGoogle Scholar
  190. Morel A, Ahn Y-H, Partensky F, Vaulot D, Claustre H (1993) Prochlorococcus and Synechococcus: a comparative study of their optical properties in relation to their size and pigmentation. J Mar Res 51:617–649CrossRefGoogle Scholar
  191. Morris JJ, Kirkegaard R, Szul MJ, Johnson ZI, Zinser ER (2008) Facilitation of robust growth of Prochlorococcus colonies and dilute liquid cultures by “helper” heterotrophic bacteria. Appl Environ Microbiol 74:4530–4534PubMedPubMedCentralCrossRefGoogle Scholar
  192. Morrissey J, Sutak R, Paz-Yepes J, Tanaka A, Moustafa A, Veluchamy A, Thomas Y, Botebol H, Bouget F-Y, McQuaid JB et al (2015) A novel protein, ubiquitous in marine phytoplankton, concentrates iron at the cell surface and facilitates uptake. Curr Biol 25:364–371PubMedCrossRefGoogle Scholar
  193. Muñoz-Marín M del C, Luque I, Zubkov MV, Hill PG, Diez J, García-Fernández JM (2013) Prochlorococcus can use the Pro1404 transporter to take up glucose at nanomolar concentrations in the Atlantic Ocean. Proc Natl Acad Sci USA 110:8597–8602Google Scholar
  194. Muro-Pastor AM, Hess WR (2012) Heterocyst differentiation: from single mutants to global approaches. Trends Microbiol 20:548–557PubMedCrossRefGoogle Scholar
  195. Neveux J, Lantoine F, Vaulot D, Marie D, Blanchot J (1999) Phycoerythrins in the southern tropical and equatorial Pacific ocean: evidence for new cyanobacterial types. J Geophys Res-Oceans 10:3311–3321CrossRefGoogle Scholar
  196. Neveux J, Tenírio MMB, Cé Dupouy, Villareal TA (2006) Spectral diversity of phycoerythrins and diazotroph abundance in tropical waters. Limnol Oceanogr 51:1689–1698CrossRefGoogle Scholar
  197. Nichols WT (2015) Designing biomimetic materials from marine organisms. J Nanosci Nanotechnol 15:189–191PubMedCrossRefGoogle Scholar
  198. Not F, Siano R, Kooistra WH, Simon N, Vaulot D, Probert I (2012) 1 Diversity and ecology of eukaryotic marine phytoplankton. Adv Bot Res 64:1–53CrossRefGoogle Scholar
  199. O’Neil JM (1998) The colonial cyanobacterium Trichodesmium as a physical and nutritional substrate for the harpacticoid copepod Macrosetella gracilis. J Plankton Res 20:43–59CrossRefGoogle Scholar
  200. O’Neil JM, Roman MR (1994) Ingestion of the cyanobacterium Trichodesmium spp. by pelagic harpacticoid copepods Macrosetella, Miracia and Oculosetella. Hydrobiologia 292:235–240CrossRefGoogle Scholar
  201. Oborník M, Lukeš J (2015) The organellar genomes of Chromera and Vitrella, the phototrophic relatives of apicomplexan parasites. Annu Rev Microbiol 69:129–144PubMedCrossRefGoogle Scholar
  202. Oborník M, Modrý D, Lukeš M, Cernotíková-Stříbrná E, Cihlář J, Tesařová M, Kotabová E, Vancová M, Prášil O, Lukeš J (2012) Morphology, ultrastructure and life cycle of Vitrella brassicaformis n. sp., n. gen., a novel chromerid from the Great Barrier Reef. Protist 163:306–323PubMedCrossRefGoogle Scholar
  203. Ohki K (1999) A possible role of temperate phage in the regulation of Trichodesmium biomass. Bull Inst Océan 287–291Google Scholar
  204. Olson EM, McGillicuddy DJ Jr, Dyhrman ST, Waterbury JB, Davis CS, Solow AR (2015) The depth-distribution of nitrogen fixation by Trichodesmium spp. colonies in the tropical–subtropical North Atlantic. Deep Sea Res Part Oceanogr Res Pap 104:72–91CrossRefGoogle Scholar
  205. Omoregie EO, Crumbliss LL, Bebout BM, Zehr JP (2004) Determination of nitrogen-fixing phylotypes in Lyngbya sp. and Microcoleus chthonoplastes cyanobacterial mats from Guerrero Negro, Baja California, Mexico. Appl Environ Microbiol 70:2119–2128PubMedPubMedCentralCrossRefGoogle Scholar
  206. Ong LJ, Glazer AN (1991) Phycoerythrins of marine unicellular cyanobacteria. I. Bilin types and locations and energy transfer pathways in Synechococcus spp. phycoerythrins. J Biol Chem 266:9515–9527PubMedGoogle Scholar
  207. Ong LJ, Glazer AN, Waterbury JB (1984) An unusual phycoerythrin from a marine cyanobacterium. Science 224:80–83PubMedCrossRefGoogle Scholar
  208. Pade N, Hagemann M (2014) Salt acclimation of cyanobacteria and their application in biotechnology. Life Basel Switz 5:25–49Google Scholar
  209. Palenik B, Brahamsha B, Larimer FW, Land M, Hauser L, Chain P, Lamerdin J, Regala W, Allen EE, McCarren J et al (2003) The genome of a motile marine Synechococcus. Nature 424:1037–1042PubMedCrossRefGoogle Scholar
  210. Palenik B, Ren Q, Dupont CL, Myers GS, Heidelberg JF, Badger JH, Madupu R, Nelson WC, Brinkac LM, Dodson RJ et al (2006) Genome sequence of Synechococcus CC9311: insights into adaptation to a coastal environment. Proc Natl Acad Sci USA 103:13555–13559PubMedPubMedCentralCrossRefGoogle Scholar
  211. Partensky F, Garczarek L (2010) Prochlorococcus: advantages and limits of minimalism. Annu Rev Mar Sci 2:305–331CrossRefGoogle Scholar
  212. Partensky F, Blanchot J, Vaulot D (1999a) Differential distribution and ecology of Prochlorococcus and Synechococcus in oceanic waters : a review. Bull Inst Océan 457–475Google Scholar
  213. Partensky F, Hess WR, Vaulot D (1999b) Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol Mol Biol Rev 63:106–127PubMedPubMedCentralGoogle Scholar
  214. Paz-Yepes J, Brahamsha B, Palenik B (2013) Role of a Microcin-C–like biosynthetic gene cluster in allelopathic interactions in marine Synechococcus. Proc Natl Acad Sci 110:12030–12035PubMedPubMedCentralCrossRefGoogle Scholar
  215. Pfreundt U, Hess WR (2015) Sequential splicing of a group II twintron in the marine cyanobacterium Trichodesmium. Sci Rep 5:16829PubMedPubMedCentralCrossRefGoogle Scholar
  216. Pfreundt U, Stal LJ, Voß B, Hess WR (2012) Dinitrogen fixation in a unicellular chlorophyll d-containing cyanobacterium. ISME J 6:1367–1377PubMedPubMedCentralCrossRefGoogle Scholar
  217. Pfreundt U, Kopf M, Belkin N, Berman-Frank I, Hess WR (2014) The primary transcriptome of the marine diazotroph Trichodesmium erythraeum IMS101. Sci Rep 4:6187PubMedPubMedCentralCrossRefGoogle Scholar
  218. Pfreundt U, Wambeke FV, Caffin M, Bonnet S, Hess WR (2016) Succession within the prokaryotic communities during the VAHINE mesocosms experiment in the New Caledonia lagoon. Biogeosciences 13:2319–2337CrossRefGoogle Scholar
  219. Pittera J, Humily F, Thorel M, Grulois D, Garczarek L, Six C (2014) Connecting thermal physiology and latitudinal niche partitioning in marine Synechococcus. ISME J 8:1221–1236PubMedPubMedCentralCrossRefGoogle Scholar
  220. Ploug H, Adam B, Musat N, Kalvelage T, Lavik G, Wolf-Gladrow D, Kuypers MMM (2011) Carbon, nitrogen and O(2) fluxes associated with the cyanobacterium Nodularia spumigena in the Baltic sea. ISME J 5:1549–1558PubMedPubMedCentralCrossRefGoogle Scholar
  221. Post AF, Dedej Z, Gottlieb R, Li H, Thomas DN, El-Absawi M, El-Naggar A, El-Gharabawi M, Sommer U (2002) Spatial and temporal distribution of Trichodesmium spp. in the stratified Gulf of Aqaba, Red Sea. Mar Ecol Prog Ser 239:241–250CrossRefGoogle Scholar
  222. Read BA, Kegel J, Klute MJ, Kuo A, Lefebvre SC, Maumus F, Mayer C, Miller J, Monier A, Salamov A et al (2013) Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature 499:209–213PubMedCrossRefGoogle Scholar
  223. Reddy KJ, Haskell JB, Sherman DM, Sherman LA (1993) Unicellular, aerobic nitrogen-fixing cyanobacteria of the genus Cyanothece. J Bacteriol 175:1284–1292PubMedPubMedCentralGoogle Scholar
  224. Reinhard CT, Planavsky NJ, Robbins LJ, Partin CA, Gill BC, Lalonde SV, Bekker A, Konhauser KO, Lyons TW (2013) Proterozoic ocean redox and biogeochemical stasis. Proc Natl Acad Sci USA 110:5357–5362PubMedPubMedCentralCrossRefGoogle Scholar
  225. Richardson TL, Jackson GA (2007) Small phytoplankton and carbon export from the surface ocean. Science 315:838–840PubMedCrossRefGoogle Scholar
  226. Rippka R, Waterbury J, Cohen-Bazire G (1974) A cyanobacterium which lacks thylakoids. Arch Microbiol 100:419–436CrossRefGoogle Scholar
  227. Rocap G, Larimer FW, Lamerdin J, Malfatti S, Chain P, Ahlgren NA, Arellano A, Coleman M, Hauser L, Hess WR et al (2003) Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424:1042–1047PubMedCrossRefGoogle Scholar
  228. Rosing MT, Frei R (2004) U-rich Archaean sea-floor sediments from Greenland—indications of > 3700 Ma oxygenic photosynthesis. Earth Planet Sci Lett 217:237–244CrossRefGoogle Scholar
  229. Rubin M, Berman-Frank I, Shaked Y (2011) Dust-and mineral-iron utilization by the marine dinitrogen-fixer Trichodesmium. Nat Geosci 4:529–534CrossRefGoogle Scholar
  230. Rusch DB, Martiny AC, Dupont CL, Halpern AL, Venter JC (2010) Characterization of Prochlorococcus clades from iron-depleted oceanic regions. Proc Natl Acad Sci USA 107:16184–16189PubMedPubMedCentralCrossRefGoogle Scholar
  231. Saito MA, Rocap G, Moffett JW (2005) Production of cobalt binding ligands in a Synechococcus feature at the Costa Rica upwelling dome. Limnol Oceanogr 50:279–290CrossRefGoogle Scholar
  232. Salvador-Reyes LA, Luesch H (2015) Biological targets and mechanisms of action of natural products from marine cyanobacteria. Nat Prod Rep 32:478–503PubMedPubMedCentralCrossRefGoogle Scholar
  233. Sánchez-Baracaldo P (2015) Origin of marine planktonic cyanobacteria. Sci Rep 5:17418PubMedPubMedCentralCrossRefGoogle Scholar
  234. Sandh G, El-Shehawy R, Di-ez B, Bergman B (2009) Temporal separation of cell division and diazotrophy in the marine diazotrophic cyanobacterium Trichodesmium erythraeum IMS101. FEMS Microbiol Lett 295:281–288Google Scholar
  235. Sandh G, Xu L, Bergman B (2012) Diazocyte development in the marine diazotrophic cyanobacterium Trichodesmium. Microbiol Read Engl 158:345–352CrossRefGoogle Scholar
  236. Sañudo-Wilhelmy SA, Gómez-Consarnau L, Suffridge C, Webb EA (2014) The role of B vitamins in marine biogeochemistry. Annu Rev Mar Sci 6:339–367CrossRefGoogle Scholar
  237. Scanlan DJ (2012) Marine picocyanobacteria. In: Ecology of cyanobacteria II. Springer, Berlin, pp 503–533Google Scholar
  238. Scanlan DJ, Ostrowski M, Mazard S, Dufresne A, Garczarek L, Hess WR, Post AF, Hagemann M, Paulsen I, Partensky F (2009) Ecological genomics of marine picocyanobacteria. Microbiol Mol Biol Rev 73:249–299PubMedPubMedCentralCrossRefGoogle Scholar
  239. Schirmer A, Rude MA, Li X, Popova E, del Cardayre SB (2010) Microbial biosynthesis of alkanes. Science 329:559–562PubMedCrossRefGoogle Scholar
  240. Sellner KG (1997) Physiology, ecology, and toxic properties of marine cyanobacteria blooms. Limnol Oceanogr 42:1089–1104CrossRefGoogle Scholar
  241. Shao CL, Linington RG, Balunas MJ, Centeno A, Boudreau P, Zhang C, Engene N, Spadafora C, Mutka TS, Kyle DE et al (2015) Bastimolide A, a potent antimalarial polyhydroxy macrolide from the marine cyanobacterium Okeania hirsuta. J Org Chem 80:7849–7855PubMedCrossRefGoogle Scholar
  242. Sharma AK, Becker JW, Ottesen EA, Bryant JA, Duhamel S, Karl DM, Cordero OX, Repeta DJ, DeLong EF (2014) Distinct dissolved organic matter sources induce rapid transcriptional responses in coexisting populations of Prochlorococcus, Pelagibacter and the OM60 clade. Environ Microbiol 16:2815–2830PubMedCrossRefGoogle Scholar
  243. Shi T, Ilikchyan I, Rabouille S, Zehr JP (2010) Genome-wide analysis of diel gene expression in the unicellular N(2)-fixing cyanobacterium Crocosphaera watsonii WH 8501. ISME J 4:621–632PubMedCrossRefGoogle Scholar
  244. Shi Y, Tyson GW, Eppley JM, DeLong EF (2011) Integrated metatranscriptomic and metagenomic analyses of stratified microbial assemblages in the open ocean. ISME J 5:999–1013PubMedPubMedCentralCrossRefGoogle Scholar
  245. Shih PM, Wu D, Latifi A, Axen SD, Fewer DP, Talla E, Calteau A, Cai F, Tandeau de Marsac N, Rippka R et al (2013) Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proc Natl Acad Sci USA 110:1053–1058PubMedPubMedCentralCrossRefGoogle Scholar
  246. Shukla A, Biswas A, Blot N, Partensky F, Karty JA, Hammad LA, Garczarek L, Gutu A, Schluchter WM, Kehoe DM (2012) Phycoerythrin-specific bilin lyase-isomerase controls blue-green chromatic acclimation in marine Synechococcus. Proc Natl Acad Sci USA 109:20136–20141PubMedPubMedCentralCrossRefGoogle Scholar
  247. Sidler WA (1994) Phycobilisome and phycobiliprotein structures. In: Bryant DA (ed) The molecular biology of cyanobacteria. Springer, Netherlands, pp 139–216CrossRefGoogle Scholar
  248. Simon N, Cras AL, Foulon E, Lemée R (2009) Diversity and evolution of marine phytoplankton. C R Biol 332:159–170PubMedCrossRefGoogle Scholar
  249. Sivonen K, Halinen K, Sihvonen LM, Koskenniemi K, Sinkko H, Rantasärkkä K, Moisander PH, Lyra C (2007) Bacterial diversity and function in the Baltic sea with an emphasis on cyanobacteria. AMBIO 36:180–185PubMedCrossRefGoogle Scholar
  250. Six C, Thomas JC, Garczarek L, Ostrowski M, Dufresne A, Blot N, Scanlan DJ, Partensky F (2007) Diversity and evolution of phycobilisomes in marine Synechococcus spp.: a comparative genomics study. Genome Biol 8:R259PubMedPubMedCentralCrossRefGoogle Scholar
  251. Smetacek V, Nicol S (2005) Polar ocean ecosystems in a changing world. Nature 437:362–368PubMedCrossRefGoogle Scholar
  252. Sohm JA, Ahlgren NA, Thomson ZJ, Williams C, Moffett JW, Saito MA, Webb EA, Rocap G (2015) Co-occurring Synechococcus ecotypes occupy four major oceanic regimes defined by temperature, macronutrients and iron. ISME J 10(2):333–345PubMedCrossRefGoogle Scholar
  253. Sournia A, Chrdtiennot-Dinet MJ, Ricard M (1991) Marine phytoplankton: how many species in the world ocean? J Plankton Res 13:1093–1099CrossRefGoogle Scholar
  254. Spungin D, Pfreundt U, Berthelot H, Bonnet S, AlRoumi D, Natale F, Hess WR, Bidle KD, Berman-Frank I (2016) Mechanisms of Trichodesmium bloom demise within the New Caledonia Lagoon during the VAHINE mesocosm experiment. Biogeosci Discuss. doi: 10.5194/bg-2015-613 Google Scholar
  255. Steglich C, Post AF, Hess WR (2003) Analysis of natural populations of Prochlorococcus spp. in the northern Red sea using phycoerythrin gene sequences. Environ Microbiol 5:681–690PubMedCrossRefGoogle Scholar
  256. Steglich C, Frankenberg-Dinkel N, Penno S, Hess WR (2005) A green light-absorbing phycoerythrin is present in the high-light-adapted marine cyanobacterium Prochlorococcus sp. MED4. Environ Microbiol 7:1611–1618PubMedCrossRefGoogle Scholar
  257. Steglich C, Futschik ME, Lindell D, Voss B, Chisholm SW, Hess WR (2008) The challenge of regulation in a minimal photoautotroph: non-coding RNAs in Prochlorococcus. PLoS Genet 4:e1000173Google Scholar
  258. Stengel DB, Connan S (2015) Marine Algae: a source of biomass for biotechnological applications. Methods Mol Biol Clifton NJ 1308:1–37CrossRefGoogle Scholar
  259. Storz G, Vogel J, Wassarman KM (2011) Regulation by small RNAs in bacteria: expanding frontiers. Mol Cell 43:880–891PubMedPubMedCentralCrossRefGoogle Scholar
  260. Taniuchi Y, Chen YL, Chen HY, Tsai ML, Ohki K (2012) Isolation and characterization of the unicellular diazotrophic cyanobacterium Group C TW3 from the tropical western Pacific ocean. Environ Microbiol 14:641–654PubMedCrossRefGoogle Scholar
  261. Thompson AW, Foster RA, Krupke A, Carter BJ, Musat N, Vaulot D, Kuypers MMM, Zehr JP (2012) Unicellular cyanobacterium symbiotic with a single-celled eukaryotic alga. Science 337:1546–1550PubMedCrossRefGoogle Scholar
  262. Thompson A, Carter BJ, Turk-Kubo K, Malfatti F, Azam F, Zehr JP (2014) Genetic diversity of the unicellular nitrogen-fixing cyanobacteria UCYN-A and its prymnesiophyte host. Environ Microbiol 16:3238–3249PubMedCrossRefGoogle Scholar
  263. Ting CS, Rocap G, King J, Chisholm SW (2002) Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategies. Trends Microbiol 10:134–142PubMedCrossRefGoogle Scholar
  264. Tripp HJ, Bench SR, Turk KA, Foster RA, Desany BA, Niazi F, Affourtit JP, Zehr JP (2010) Metabolic streamlining in an open-ocean nitrogen-fixing cyanobacterium. Nature 464:90–94PubMedCrossRefGoogle Scholar
  265. Turk-Kubo KA, Karamchandani M, Capone DG, Zehr JP (2014) The paradox of marine heterotrophic nitrogen fixation: abundances of heterotrophic diazotrophs do not account for nitrogen fixation rates in the Eastern Tropical South Pacific. Environ Microbiol 16:3095–3114PubMedCrossRefGoogle Scholar
  266. Turk-Kubo KA, Frank IE, Hogan ME, Desnues A, Bonnet S, Zehr JP (2015) Diazotroph community succession during the VAHINE mesocosm experiment (New Caledonia lagoon). Biogeosciences 12:7435–7452CrossRefGoogle Scholar
  267. Unrein F, Gasol JM, Not F, Forn I, Massana R (2014) Mixotrophic haptophytes are key bacterial grazers in oligotrophic coastal waters. ISME J 8:164–176PubMedPubMedCentralCrossRefGoogle Scholar
  268. Urbach E, Scanlan DJ, Distel DL, Waterbury JB, Chisholm SW (1998) Rapid diversification of marine picophytoplankton with dissimilar light-harvesting structures inferred from sequences of Prochlorococcus and Synechococcus (Cyanobacteria). J Mol Evol 46:188–201PubMedCrossRefGoogle Scholar
  269. Varkey D, Mazard S, Ostrowski M, Tetu SG, Haynes P, Paulsen IT (2015) Effects of low temperature on tropical and temperate isolates of marine Synechococcus. ISME J. doi: 10.1038/ismej.2015.179 PubMedGoogle Scholar
  270. Vaulot D, Lepère C, Toulza E, De la Iglesia R, Poulain J, Gaboyer F, Moreau H, Vandepoele K, Ulloa O, Gavory F et al (2012) Metagenomes of the picoalga Bathycoccus from the Chile coastal upwelling. PLoS ONE 7:e39648PubMedPubMedCentralCrossRefGoogle Scholar
  271. Villar E, Farrant GK, Follows M, Garczarek L, Speich S, Audic S, Bittner L, Blanke B, Brum JR, Brunet C et al (2015) Environmental characteristics of Agulhas rings affect interocean plankton transport. Science 348:1261447PubMedCrossRefGoogle Scholar
  272. Villareal TA (1991) Nitrogen-fixation by the cyanobacterial symbiont of the diatom genus Hemiaulus. Mar Ecol Prog Ser Oldendorf 76:201–204CrossRefGoogle Scholar
  273. Villareal TA (1992) Marine nitrogen-fixing diatom-cyanobacteria symbioses. In: Marine pelagic cyanobacteria: Trichodesmium and other diazotrophs. Springer, Berlin, pp 163–175Google Scholar
  274. Villareal TA (1994) Widespread occurrence of the Hemiaulus-cyanobacterial symbiosis in the southwest North Atlantic ocean. Bull Mar Sci 54:1–7Google Scholar
  275. Voss B, Bolhuis H, Fewer DP, Kopf M, Möke F, Haas F, El-Shehawy R, Hayes P, Bergman B, Sivonen K et al (2013) Insights into the physiology and ecology of the brackish-water-adapted Cyanobacterium Nodularia spumigena CCY9414 based on a genome-transcriptome analysis. PLoS ONE 8:e60224PubMedPubMedCentralCrossRefGoogle Scholar
  276. Walworth N, Pfreundt U, Nelson WC, Mincer T, Heidelberg JF, Fu F, Waterbury JB, Glavina del Rio T, Goodwin L, Kyrpides NC et al (2015) Trichodesmium genome maintains abundant, widespread noncoding DNA in situ, despite oligotrophic lifestyle. Proc Natl Acad Sci USA 112:4251–4256PubMedPubMedCentralCrossRefGoogle Scholar
  277. Waterbury JB, Watson SW, Guillard RRL, Brand LE (1979) Widespread occurrence of a unicellular, marine, planktonic, cyanobacterium. Nature 277:293–294CrossRefGoogle Scholar
  278. Webb EA, Jakuba RW, Moffett JW, Dyhrman ST (2007) Molecular assessment of phosphorus and iron physiology in Trichodesmium populations from the western Central and western South Atlantic. Limnol Oceanogr 52:2221–2232CrossRefGoogle Scholar
  279. West NJ, Lebaron P, Strutton PG, Suzuki MT (2011) A novel clade of Prochlorococcus found in high nutrient low chlorophyll waters in the South and Equatorial Pacific ocean. ISME J 5:933–944PubMedPubMedCentralCrossRefGoogle Scholar
  280. Whitehead L, Long BM, Price GD, Badger MR (2014) Comparing the in vivo function of α-carboxysomes and β-carboxysomes in two model cyanobacteria. Plant Physiol 165:398–411PubMedPubMedCentralCrossRefGoogle Scholar
  281. Woebken D, Burow LC, Behnam F, Mayali X, Schintlmeister A, Fleming ED, Prufert-Bebout L, Singer SW, Cortés AL, Hoehler TM et al (2015) Revisiting N2 fixation in Guerrero Negro intertidal microbial mats with a functional single-cell approach. ISME J 9:485–496PubMedPubMedCentralCrossRefGoogle Scholar
  282. Worden AZ, Nolan JK, Palenik B et al (2004) Assessing the dynamics and ecology of marine picophytoplankton: the importance of the eukaryotic component. Limnol Oceanogr 49:168–179CrossRefGoogle Scholar
  283. Worden AZ, Follows MJ, Giovannoni SJ, Wilken S, Zimmerman AE, Keeling PJ (2015) Environmental science. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science 347:1257594PubMedCrossRefGoogle Scholar
  284. Xia S, Gao B, Li A, Xiong J, Ao Z, Zhang C (2014) Preliminary characterization, antioxidant properties and production of chrysolaminarin from marine diatom Odontella aurita. Mar Drugs 12:4883–4897PubMedPubMedCentralCrossRefGoogle Scholar
  285. You I, Lee TG, Nam YS, Lee H (2014) Fabrication of a micro-omnifluidic device by omniphilic/omniphobic patterning on nanostructured surfaces. ACS Nano 8:9016–9024PubMedCrossRefGoogle Scholar
  286. Zeev EB, Yogev T, Man-Aharonovich D, Kress N, Herut B, Béjà O, Berman-Frank I (2008) Seasonal dynamics of the endosymbiotic, nitrogen-fixing cyanobacterium Richelia intracellularis in the eastern Mediterranean sea. ISME J 2:911–923PubMedCrossRefGoogle Scholar
  287. Zehr JP (2015) Evolution. How single cells work together. Science 349:1163–1164PubMedCrossRefGoogle Scholar
  288. Zehr JP, Kudela RM (2011) Nitrogen cycle of the open ocean: from genes to ecosystems. Annu Rev Mar Sci 3:197–225CrossRefGoogle Scholar
  289. Zehr JP, Waterbury JB, Turner PJ, Montoya JP, Omoregie E, Steward GF, Hansen A, Karl DM (2001) Unicellular cyanobacteria fix N2 in the subtropical North Pacific ocean. Nature 412:635–638PubMedCrossRefGoogle Scholar
  290. Zehr JP, Bench SR, Carter BJ, Hewson I, Niazi F, Shi T, Tripp HJ, Affourtit JP (2008) Globally distributed uncultivated oceanic N2-fixing cyanobacteria lack oxygenic photosystem II. Science 322:1110–1112PubMedCrossRefGoogle Scholar
  291. Zhao KH, Deng MG, Zheng M, Zhou M, Parbel A, Storf M, Meyer M, Strohmann B, Scheer H (2000) Novel activity of a phycobiliprotein lyase: both the attachment of phycocyanobilin and the isomerization to phycoviolobilin are catalyzed by the proteins PecE and PecF encoded by the phycoerythrocyanin operon. FEBS Lett 469:9–13PubMedCrossRefGoogle Scholar
  292. Zhaxybayeva O, Doolittle WF, Papke RT, Gogarten JP (2009) Intertwined evolutionary histories of marine Synechococcus and Prochlorococcus marinus. Genome Biol Evol 1:325–339PubMedPubMedCentralCrossRefGoogle Scholar
  293. Zilliges Y, Kehr JC, Meissner S, Ishida K, Mikkat S, Hagemann M, Kaplan A, Börner T, Dittmann E (2011) The cyanobacterial hepatotoxin microcystin binds to proteins and increases the fitness of microcystis under oxidative stress conditions. PLoS ONE 6:e17615PubMedPubMedCentralCrossRefGoogle Scholar
  294. Zinser ER, Johnson ZI, Coe A, Karaca E, Veneziano D, Chisholm SW (2007) Influence of light and temperature on Prochlorococcus ecotype distributions in the Atlantic ocean. Limnol Oceanogr 52:2205–2220CrossRefGoogle Scholar
  295. Zubkov MV (2009) Photoheterotrophy in marine prokaryotes. J Plankton Res 31:933–938CrossRefGoogle Scholar
  296. Zwirglmaier K, Jardillier L, Ostrowski M, Mazard S, Garczarek L, Vaulot D, Not F, Massana R, Ulloa O, Scanlan DJ (2008) Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages among oceanic biomes. Environ Microbiol 10:147–161PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Wolfgang R. Hess
    • 1
  • Laurence Garczarek
    • 2
  • Ulrike Pfreundt
    • 1
  • Frédéric Partensky
    • 2
  1. 1.Faculty of Biology, Institute of Biology 3, Genetics and Experimental BioinformaticsUniversity of FreiburgFreiburgGermany
  2. 2.CNRS UMR 7144, Department of Adaptation and Diversity in the Marine Environment, Marine Photosynthetic Prokaryotes Team, Station BiologiqueSorbonne Universités-Université Paris 06Roscoff CedexFrance

Personalised recommendations