Advertisement

Marine Microbial Systems Ecology: Microbial Networks in the Sea

  • Gerard MuyzerEmail author
Chapter

Abstract

Next-generation sequencing of DNA has revolutionized microbial ecology. Using this technology, it became for the first time possible to analyze hundreds of samples simultaneously and in great detail. 16S rRNA amplicon sequencing, metagenomics and metatranscriptomics became available to determine the diversity and activity of microbial communities. Moreover, the huge amount of data that is obtained made it possible to build statistically significant networks from which ecological (or metabolic) interactions amongst microbes and between microbes and their environment could be inferred. Here I give an overview of the use of next-generation sequencing and network analysis in marine microbial ecology.

Keywords

Microbial Community System Biology Approach Microbial Loop Deep Chlorophyll Maximum Viral Community 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement no 311975. This publication reflects the views only of the author, and the European Union cannot be held responsible for any use which may be made of the information contained therein. Gerard Muyzer is financially supported by the Research Priority Area Systems Biology of the University of Amsterdam. Muhe Diao is acknowledged for calculating the co-occurrence network, and Tim Bush for correcting the English.

References

  1. Aylward FO, Eppley JM, Smith JM, Chavez FP, Scholin CA, DeLong EF (2015) Microbial community transcriptional networks are conserved in three domains at ocean basin scales. PNAS 112:5443–5448CrossRefPubMedPubMedCentralGoogle Scholar
  2. Azam A, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol 10:257–263CrossRefGoogle Scholar
  3. Baker BJ, Sheik CS, Taylor CA et al (2013) Community transcriptomic assembly reveals microbes that contribute to deep-sea carbon and nitrogen cycling. ISME J 7:1962–1973CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barberán A, Bates ST, Casamayor EO, Fierer N (2011) Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J 6:343–351CrossRefPubMedPubMedCentralGoogle Scholar
  5. Breitbart M, Rohwer F (2005) Here a virus, there a virus, everywhere the same virus? Trends Microbiol 13:278–284CrossRefPubMedGoogle Scholar
  6. Brum JR, Ignacio-Espinoza JC, Roux S et al (2015) Patterns and ecological drivers of ocean viral communities. Science 348:1261498-1–1261498-10Google Scholar
  7. Cain F (2013) How many stars in the universe? Universe Today. http://www.universetoday.com/102630/how-many-stars-are-there-in-the-universe/
  8. Chow C-ET, Kim DY, Sachdeva R et al (2014) Top-down controls on bacterial community structure: microbial network analysis of bacteria, T4-like viruses and protists. ISME J 8:816–829CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cram JA, Xia LC, Needham DM, Sachdeva R, Sun F, Fuhrman JA (2015) Cross-depth analysis of marine bacterial networks suggests downward propagation of temporal changes. ISME J 9:2573–2586CrossRefPubMedGoogle Scholar
  10. Eiler A, Heinrich F, Bertilsson S (2012) Coherent dynamics and association networks among lake bacterioplankton taxa. ISME J 6:330–342CrossRefPubMedPubMedCentralGoogle Scholar
  11. Falkowski PG, Fenchel T, DeLong EF (2008) The microbial engines that drive the Earth’s biogeochemical cycles. Science 320:1034–1039CrossRefPubMedGoogle Scholar
  12. Faust K, Raes J (2012) Microbial interactions: from networks to models. Nat Rev Microbiol 10:538–550CrossRefPubMedGoogle Scholar
  13. Faust K, Sathirapongsasuti JF, Izard J, Segata N, Gevers D, Raes J et al (2012) Microbial co-occurrence relationships the human microbiome. PLoS Comput Biol 8:e1002606CrossRefPubMedPubMedCentralGoogle Scholar
  14. Faust K, Lima-Mendez G, Lerat J-S, Sathirapongsasuti JF et al (2015) Cross-biome comparison of microbial association networks. Front Microbiol 6:1200CrossRefPubMedPubMedCentralGoogle Scholar
  15. Ferla MP, Thrash J, Giovannoni SJ, Patrick WM (2013) New rRNA gene-based phylogenies of the Alphaproteobacteria provide perspective on major groups, mitochondrial ancestry and phylogenetic instability. PLoS ONE 8:e83383CrossRefPubMedPubMedCentralGoogle Scholar
  16. Franzosa EA, Hsu T, Sirota-Madi A et al (2015) Sequencing and beyond: integrating molecular ‘omics’ for microbial community profiling. Nat Rev Microbiol 13:360–372CrossRefPubMedPubMedCentralGoogle Scholar
  17. Frias-Lopez J, Shi Y, Tyson GW, Coleman ML et al (2008) Microbial community gene expression in ocean surface waters. Proc Natl Acad Sci 105:3805–3810CrossRefPubMedPubMedCentralGoogle Scholar
  18. Fuhrman JA, Cram JA, Needham DM (2015) Marine microbial community dynamics and their ecological interpretation. Nat Rev Microbiol 13:133–146CrossRefPubMedGoogle Scholar
  19. Gilbert JA, Steele JA, Caporaso JG et al (2012) Defining seasonal marine microbial community dynamics. ISME J 6:298–308CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hamady M, Walker JJ, Harris JK et al (2008) Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nat Methods 5:235–237CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hanemaaijer M, Röling WFM, Olivier BG et al (2015) Systems modeling approaches for microbial community studies: from metagenomics to inference of the community structure. Front Microbiol 6:213CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hurwitz BL, Sullivan MB (2013) The Pacific Ocean Virome (POV): a marine viral metagenomic dataset and associated protein clusters for quantitative viral ecology. PLoS ONE 8:e57355CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hurwitz BL, Westveld AH, Brum JR, Sullivan MB (2014) Modeling ecological drivers in marine viral communities using comparative metagenomics and network analyses. Proc Natl Acad Sci 111:10714–10719CrossRefPubMedPubMedCentralGoogle Scholar
  24. Karsenti E, Acinas SG, Bork P et al (2011) A holistic approach to marine eco-system biology. PLoS Biol 9:e1001177CrossRefPubMedPubMedCentralGoogle Scholar
  25. Klindworth A, Mann AJ, Huang S, Wichels A et al (2014) Diversity and activity of marine bacterioplankton during a diatom bloom in the North Sea assessed by total RNA and pyrotag sequencing. Mar Genomics 18:185–192CrossRefPubMedGoogle Scholar
  26. Knopf A, Kostadinov I, Wichels A, Quast C, Glöckner FO (2015) Metatranscriptomics of marine bacterioplankton during winter time in the North Sea by total RNA sequencing. Mar Genomics 19:45–46CrossRefGoogle Scholar
  27. Lee D-H, Zo Y-G, Kim S-J (1996) Nonradioactive method to study genetic profiles of natural bacterial communities by PCR-single-strand-conformation-polymorphism. Appl Environ Microbiol 62:3112–3120PubMedPubMedCentralGoogle Scholar
  28. Lima-Mendez G, Faust K, Henry N et al (2015) Determinants of community structure in the global plankton interactome. Science 348:1262073-1–1262073-9Google Scholar
  29. Logares R, Sunagawa S, Salazar G et al (2014) Metagenomic 16S rDNA Illumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities. Environ Microbiol 16:2659–2671CrossRefPubMedGoogle Scholar
  30. Maclean D, Jones JDG, Studholme DJ (2009) Application of ‘next-generation’ sequencing technologies to microbial genetics. Nat Rev Microbiol 7:287–296PubMedGoogle Scholar
  31. Marsh TL (1999) Terminal restriction fragment length polymorphism (T-RFLP): an emerging method for characterizing diversity among homologous populations of amplified products. Curr Opin Microbiol 2:323–327CrossRefPubMedGoogle Scholar
  32. Morris RM, Nunn BL, Frazar C, Goodlett DR, Ting YS, Rocap G (2010) Comparative metaproteomics reveals ocean-scale shifts in microbial nutrient utilization and energy transduction. ISME J 4:673–685CrossRefPubMedGoogle Scholar
  33. Muller EEL, Glaab E, May P, Vlassis N, Wilmes P (2013) Condensing the omics fog of microbial communities. Trends Microbiol 21:325–333CrossRefPubMedGoogle Scholar
  34. Muyzer G (1999) DGGE/TGGE a method for identifying genes from natural ecosystems. Curr Opin Microbiol 2:317–322CrossRefPubMedGoogle Scholar
  35. Ottesen EA, Marin R III, Preston CM, Young CR et al (2011) Metatranscriptomic analysis of autonomously collected and preserved marine bacterioplankton. ISME J 5:1881–1895CrossRefPubMedPubMedCentralGoogle Scholar
  36. Ottesen EA, Young CR, Eppley JM, Ryan JP et al (2013) Pattern and synchrony of gene expression among sympartic marine microbial populations. PNAS 110:E488–E497CrossRefPubMedPubMedCentralGoogle Scholar
  37. Pedrós-Alió C (2006) Marine microbial diversity: can it be determined? Trends Microbiol 14:257–263CrossRefPubMedGoogle Scholar
  38. Peura S, Bertilsson S, Jones RI, Eiler A (2015) Resistant microbial co-occurrence patterns inferred by network topology. Appl Environ Microbiol 81:2090–2097CrossRefPubMedPubMedCentralGoogle Scholar
  39. Raes J, Bork P (2008) Molecular eco-systems biology: towards an understanding of community function. Nat Rev Microbiol 6:693–699CrossRefPubMedGoogle Scholar
  40. Sears CL (2005) A dynamic partnership: celebrating our gut flora. Anaerobe 11:247–251CrossRefPubMedGoogle Scholar
  41. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504CrossRefPubMedPubMedCentralGoogle Scholar
  42. Sogin ML, Morrison HG, Huber JA, Welch DM et al (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci 103:12115–12120CrossRefPubMedPubMedCentralGoogle Scholar
  43. Sowell SM, Wilhelm LJ, Norbeck AD, Lipton MS et al (2009) Transport functions dominate the SAR11 metaproteome at low-nutrient extremes in the Sargasso Sea. ISME J 3:93–105CrossRefPubMedGoogle Scholar
  44. Sowell SM, Abraham PE, Shah M, Verberkmoes NC et al (2011) Environmental proteomics of microbial plankton in a highly productive coastal upwelling system. ISME J 5:856–865CrossRefPubMedPubMedCentralGoogle Scholar
  45. Staley JT, Konopka A (1985) Measurements of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Ann Rev Microbiol 39:321–346CrossRefGoogle Scholar
  46. Steele JA, Countway PD, Xia L et al (2011) Marine bacterial, archaeal and protistan association networks reveal ecological linkages. ISME J 5:1414–1425CrossRefPubMedPubMedCentralGoogle Scholar
  47. Sunagawa S, Coelho LP, Chaffron S et al (2015) Structure and function of the global ocean microbiome. Science 348:1261359-1–1261359-9CrossRefGoogle Scholar
  48. Teeling H, Fuchs BM, Becher D, Klockow C et al (2012) Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science 336:608–611CrossRefPubMedGoogle Scholar
  49. Thiele I, Heinken A, Fleming RMT (2013) A systems biology approach to studying the role of microbes in human health. Curr Opin Biotechnol 24:4–12CrossRefPubMedGoogle Scholar
  50. Verberkmoes NC, Denef VJ, Hettich RL, Banfield JF (2009) Functional analysis of natural microbial consortia using community proteomics. Nat Rev Microbiol 7:96–205CrossRefGoogle Scholar
  51. Wang D-Z, Xie Z-X, Zhang S-F (2014) Marine metaproteomics; current status and future directions. J Proteomics 97:27–35CrossRefPubMedGoogle Scholar
  52. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci 95:6578–6583CrossRefPubMedPubMedCentralGoogle Scholar
  53. Widder S, Besemer K, Singer GA, Ceola S et al (2014) Fluvial network organization imprints on microbial co-occurrence networks. PNAS 111:12799–12804CrossRefPubMedPubMedCentralGoogle Scholar
  54. Williams TJ, Cavicchioli R (2014) Marine metaproteomics: deciphering the microbial metabolic food web. Trends Microbiol 22:248–260CrossRefPubMedGoogle Scholar
  55. Zengler K, Palsson BO (2012) A road map for the development of community systems (CoSy) biology. Nat Rev Microbiol 10:366–372PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Microbial Systems Ecology, Department of Aquatic MicrobiologyInstitute for Biodiversity and Ecosystem Dynamics, University of AmsterdamAmsterdamThe Netherlands

Personalised recommendations