Advertisement

Segre, Klein, and the Theory of Quadratic Line Complexes

  • David E. Rowe
Conference paper
Part of the Trends in the History of Science book series (TRENDSHISTORYSCIENCE)

Abstract

Two of C. Segre’s earliest papers, (Segre 1883a) and (Segre 1884), dealt with the classification of quadratic line complexes, a central topic in line geometry. These papers, the first written together with Gino Loria, were submitted to Felix Klein in 1883 for publication in Mathematische Annalen. Together with the two lengthier works that comprise Segre’s dissertation, (Segre 1883b) and (Segre 1883c), they took up and completed a topic that Klein had worked on a decade earlier (when he was known primarily as an expert on line geometry). Using similar ideas, but a new and freer approach to higher-dimensional geometry, Segre not only refined and widened this earlier work but also gave it a new direction. Line geometry, as well described by Alessandro Terracini in his obituary for his mentor, proved to be an excellent starting point for both Segre and Italian algebraic geometry. The present account begins by looking back at the early work of Klein and Adolf Weiler on quadratic complexes in order to show how Segre’s two papers for Klein’s journal represented a new start that reawakened interest in a topic that had been dormant for nearly a decade.

Keywords

Singularity Surface Linear Complex Line Complex Double Line Quadric Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aschieri, Ferdinando, Sopra un complesso di secondo grado, Giornale di Matematiche 8 (1870): 35–37; 229–234.Google Scholar
  2. Battaglini, Giuseppe, Intorno ai sistemi di rette di secondo grado, Atti della Reale Accademia delle scienze fisiche e matematiche di Napoli, 5 (1866): 194–208.Google Scholar
  3. Battaglini, Giuseppe, Intorno ai sistemi di rette di secondo grado, Giornale di Matematiche 6 (1868): 239–283.Google Scholar
  4. Battaglini, Giuseppe, Intorno ai sistemi di rette di secondo grado, Giornale di Matematiche 7 (1869): 55–75.Google Scholar
  5. Bottazzini, Umberto, Italy, in (Dauben and Scriba 2002), 61–96.Google Scholar
  6. Cayley, Arthur, On Plücker’s Models of certain Quartic Surfaces, Proceedings of the London Mathematical Society, 3 (1871): 281–285.Google Scholar
  7. Clebsch, Alfred, Zum Gedächtnis an Julius Plücker, Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen, Band 16 (1871): 1–40.Google Scholar
  8. Dauben, Joseph and Scriba, Christoph, eds., Writing the History of Mathematics: its Historical Development, (Science Networks, vol. 27), Basel: Birkhäuser, 2002.Google Scholar
  9. Dieudonné, Jean, History of Algebraic Geometry. J. Sally, trans., Monterey, California: Wadsworth Inc. 1985.Google Scholar
  10. Giacardi, Livia, Corrado Segre maestro a Torino. La nascita della scuola italiana di geometria algebrica, Annali di storia delle università italiane, 5 (2001): 139–163.Google Scholar
  11. Hirst, Thomas Archer, On the complexes generated by two correlative planes, Proceedings of the London Mathematical Society, 10 (1879): 131–143; reprinted in In memoriam Dominici Chelini. Collectanea mathematica, L. Cremona and E. Beltrami, eds., Mediolani: Hoepli, 1881, 51–73.Google Scholar
  12. Hudson, Ronald W. H. T., Kummer’s Quartic Surface, Cambridge: Camdrige University Press, 1905; reprinted in 1990.Google Scholar
  13. Fischer, Gerd, Hrsg., Mathematische Modelle, 2 Bde., Berlin: Akademie Verlag, 1986.Google Scholar
  14. Klein, Felix, Zur Theorie der Liniencomplexe des ersten und zweiten Grades, Mathematische Annalen 2 (1870): 198–228.Google Scholar
  15. Klein, Felix, Ueber Liniengeometrie und metrische Geometrie, Mathematische Annalen 5 (1872): 257–277.Google Scholar
  16. Klein, Felix, Ueber die Plückersche Komplexfläche, Mathematische Annalen 7 (1874): 208–211.Google Scholar
  17. Klein, Felix, Ueber die Transformation der allgemeinen Gleichung des zweiten Grades zwischen Linien-Coordinaten auf eine canonische Form, Mathematische Annalen 23 (1884): 579–586.Google Scholar
  18. Klein, Felix and Lie, Sophus, Ueber die Haupttangentencurven der Kummer’schen Fläche vierten Grades mit 16 Knotenpunkten, Mathematische Annalen 23 (1884): 198–228.Google Scholar
  19. Klein, Felix, Gesammelte Mathematische Abhandlungen, 3 Bde., Berlin: Julius Springer, 1921, 1922, 1923.Google Scholar
  20. Luciano, Erika and Roero, Clara Silvia, From Turin to Göttingen: Dialogues and Correspondence (1879–1923), Bollettino di Storia delle Scienze Matematiche 32(1) (2012): 7–232.Google Scholar
  21. Menghini, Marta, ed., La corrispondenza di Luigi Cremona (1830–1903), Quaderni PRISTEM 9, Milano: Bocconi, 1996.Google Scholar
  22. Painvin, Louis Félix, Étude d’un complexe du second ordre, Nouvelles annales de mathématiques, Série 2 (1872): 49–60.Google Scholar
  23. Plücker, Julius, Neue Geometrie des Raumes gegründet auf die Betrachtung der geraden Linie als Raumelement, Erste Abteilung, Leipzig: Teubner, 1868.Google Scholar
  24. Plücker, Julius, Neue Geometrie des Raumes gegründet auf die Betrachtung der geraden Linie als Raumelement, Zweite Abteilung, hrsg. F. Klein, Leipzig: Teubner, 1869.Google Scholar
  25. Rohn, Karl, Transformation der hyperelliptischen Functionen p = 2 und ihre Bedeutung für die Kummer’sche Fläche, Mathematische Annalen 15 (1879): 315–354.Google Scholar
  26. Schilling, Martin, Hrsg., Katalog mathematischer Modelle für den höheren mathematischen Unterricht, Leipzig: M. Schilling, 1911.Google Scholar
  27. Schur, Friedrich, Ueber einen das System zweier Flächen 2. Grades betreffenden Satz und einen damit verbundenen Strahlenkomplex 2. Grades, Mathematische Annalen 21 (1883): 515–527.Google Scholar
  28. Segre, Corrado, Loria, Gino, Sur les différentes espèces de complexes du 2e degré des droites qui coupent harmoniquement deux surfaces du second ordre, Mathematische Annalen, 23 (1883a): 213–234.Google Scholar
  29. Segre, Corrado, Studio sulle quadriche in uno spazio lineare ad un numero qualunque di dimensioni, Memorie della R. Accademia delle Scienze di Torino, 2(36) (1883b): 3–86.Google Scholar
  30. Segre, Corrado, Sulla geometria della retta e delle sue serie quadratiche, Memorie della R. Accademia delle Scienze di Torino, 2 (36) (1883c): 87–157.Google Scholar
  31. Segre, Corrado. Note sur les complexes quadratiques dont la surface singulière est une surface du 2° dégré double, Mathematische Annalen, 23 (1884): 235–243.Google Scholar
  32. Terracini, Alessandro, Corrado Segre (1863–1924), Jahresbericht der Deutschen Mathematiker-Vereinigung 35 (1926): 209–250.Google Scholar
  33. Weiler, Adolf, Über die verscheidenen Gattungen der Complexe zweiten Grades, Mathematische Annalen 7 (1874): 145–207.Google Scholar
  34. Ziegler, Renatus, Die Geschichte der geometrischen Mechanik im 19. Jahrhundert: Eine historisch-systematische Untersuchung von Möbius und Plücker bis zu Klein und Lindemann, Stuttgart: Franz Steiner Verlag, 1985.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Johannes Gutenberg UniversityMainzGermany

Personalised recommendations