Skip to main content

Male Fertility Preservation: Current Options and Advances in Research

Abstract

Chemotherapy and radiation treatments for cancer and other conditions can cause permanent infertility. Adult men have the option to cryopreserve a semen sample with sperm prior to treatment and use their sample in the future to have biological children using established assisted reproductive technologies. This option is not available to prepubertal boys who are not yet producing mature sperm. However, these boys do have spermatogonial stem cells in their testes that are poised to initiate sperm production at puberty. Centers in the USA and abroad are actively cryopreserving testicular tissue for prepubertal cancer patients, bone marrow transplant patients, and others in anticipation that stem cell therapies will be available for them in the future. This chapter reviews progress in the development of spermatogonial stem cell transplantation, testicular tissue grafting and xenografting, testicular tissue organ culture, de novo testicular morphogenesis, and pluripotent stem cell-derived gametogenesis.

Keywords

  • Stem cells
  • Spermatogonial stem cells
  • Spermatogenesis
  • Cryopreservation
  • Sperm banking
  • Testicular tissue cryopreservation
  • Fertility
  • Fertility preservation
  • Infertility
  • Klinefelter

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-32973-4_8
  • Chapter length: 24 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-32973-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 8.1

References

  1. Surviving Childhood Cancer. http://www.cancer.org/cancer/cancerinchildren/detailedguide/cancer-in-children-treating-survival-rates: American Cancer Society; 2015. Available from: http://www.cancer.org/cancer/cancerinchildren/detailedguide/cancer-in-children-treating-survival-rates.

  2. Schover LR. Patient attitudes toward fertility preservation. Pediatr Blood Cancer. 2009;53(2):281–4.

    PubMed  CrossRef  Google Scholar 

  3. Lee SJ, Schover LR, Partridge AH, Patrizio P, Wallace WH, Hagerty K, Beck LN, Brennan LV, Oktay K. American Society of Clinical Oncology recommendations on fertility preservation in cancer patients. J Clin Oncol Off J Am Soc Clin Oncol. 2006;24(18):2917–31.

    CrossRef  Google Scholar 

  4. Loren AW, Mangu PB, Beck LN, Brennan L, Magdalinski AJ, Partridge AH, Quinn G, Wallace WH, Oktay K, American Society of Clinical Oncology. Fertility preservation for patients with cancer: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol Off J Am Soc Clin Oncol. 2013;31(19):2500–10.

    CrossRef  Google Scholar 

  5. Ethics Committee of the American Society for Reproductive Medicine. Fertility preservation and reproduction in cancer patients. Fertil Steril. 2005;83(6):1622–28.

    Google Scholar 

  6. Practice Committee of American Society for Reproductive Medicine. Fertility preservation in patients undergoing gonadotoxic therapy or gonadectomy: a committee opinion. Fertil Steril. 2013;100(5):1214–23.

    Google Scholar 

  7. Wallace WH, Anderson RA, Irvine DS. Fertility preservation for young patients with cancer: who is at risk and what can be offered? Lancet Oncol. 2005;6(4):209–18.

    PubMed  CrossRef  Google Scholar 

  8. Meistrich ML. Male gonadal toxicity. Pediatr Blood Cancer. 2009;53(2):261–6.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  9. Levine J, Canada A, Stern CJ. Fertility preservation in adolescents and young adults with cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28(32):4831–41.

    CrossRef  Google Scholar 

  10. Green DM, Kawashima T, Stovall M, Leisenring W, Sklar CA, Mertens AC, Donaldson SS, Byrne J, Robison LL. Fertility of male survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28(2):332–9.

    CrossRef  Google Scholar 

  11. Meistrich ML, Vassilopoulou-Sellin R, Lipshultz LI. Adverse effects of treatment: gonadal dysfunction. In: DeVita VT, Hellman S, Rosenberg SA, editors. Principles and practice of oncology. 7th ed. Philadelphia: Lippincott Williams & Wilkins; 2004. p. 2560–74.

    Google Scholar 

  12. Howlader N, Noone AM, Krapcho M, Neyman N, Aminou R, Waldron W, Altekruse SF, Kosary CL, Ruhl J, Tatalovich Z, Cho H, Mariotto A, Eisner MP, Lewis DR, Chen HS, Feuer EJ, Cronin KA, Edwards BK. SEER cancer statistic review 1975–2008. Bethesda: National Cancer Institute; 2010. [cited 2011], Available from: http://seer.cancer.gov/csr/1975_2008/.

    Google Scholar 

  13. Wasilewski-Masker K, Seidel KD, Leisenring W, Mertens AC, Shnorhavorian M, Ritenour CW, Stovall M, Green DM, Sklar CA, Armstrong GT, Robison LL, Meacham LR. Male infertility in long-term survivors of pediatric cancer: a report from the childhood cancer survivor study. J Cancer Surviv. 2014;8(3):437–47.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  14. Schover LR, Brey K, Lichtin A, Lipshultz LI, Jeha S. Knowledge and experience regarding cancer, infertility, and sperm banking in younger male survivors. J Clin Oncol Off J Am Soc Clin Oncol. 2002;20(7):1880–9.

    CrossRef  Google Scholar 

  15. Schover LR, Brey K, Lichtin A, Lipshultz LI, Jeha S. Oncologists’ attitudes and practices regarding banking sperm before cancer treatment. J Clin Oncol Off J Am Soc Clin Oncol. 2002;20(7):1890–7.

    CrossRef  Google Scholar 

  16. Sadri-Ardekani H, Akhondi MM, Vossough P, Maleki H, Sedighnejad S, Kamali K, Ghorbani B, van Wely M, van der Veen F, Repping S. Parental attitudes toward fertility preservation in boys with cancer: context of different risk levels of infertility and success rates of fertility restoration. Fertil Steril. 2013;99(3):796–802.

    PubMed  CrossRef  Google Scholar 

  17. Gilbert E, Adams A, Mehanna H, Harrison B, Hartshorne GM. Who should be offered sperm banking for fertility preservation? A survey of UK oncologists and haematologists. Ann Oncol Off J Eur Soc Med Oncol/ESMO. 2011;22(5):1209–14.

    CAS  CrossRef  Google Scholar 

  18. Klosky JL, Simmons JL, Russell KM, Foster RH, Sabbatini GM, Canavera KE, Hodges JR, Schover LR, McDermott MJ. Fertility as a priority among at-risk adolescent males newly diagnosed with cancer and their parents. Support Care Cancer Off J Multinatl Assoc Support Care Cancer. 2015;23(2):333–41.

    Google Scholar 

  19. Tegelenbosch RA, de Rooij DG. A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 F1 hybrid mouse. Mutat Res. 1993;290(2):193–200.

    CAS  PubMed  CrossRef  Google Scholar 

  20. de Rooij DG, Grootegoed JA. Spermatogonial stem cells. Curr Opin Cell Biol. 1998;10(6):694–701.

    PubMed  CrossRef  Google Scholar 

  21. Phillips BT, Gassei K, Orwig KE. Spermatogonial stem cell regulation and spermatogenesis. Philos Trans R Soc Lond B Biol Sci. 2010;365(1546):1663–78.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  22. Valli H, Phillips BT, Gassei K, Nagano MC, Orwig KE. Spermatogonial stem cells and spermatogenesis. In: Plant TM, Zeleznik AJ, editors. Knobil and Neill’s physiology of reproduction, vol. 1. 4th ed. San Diego: Elsevier; 2015. p. 595–635.

    Google Scholar 

  23. Sharpe RM. Regulation of spermatogenesis. In: Knobil E, Neill JD, editors. The physiology of reproduction. New York: Raven Press, Ltd.; 1994. p. 1363–434.

    Google Scholar 

  24. Bucci LR, Meistrich ML. Effects of busulfan on murine spermatogenesis: cytotoxicity, sterility, sperm abnormalities, and dominant lethal mutations. Mutat Res. 1987;176(2):259–68.

    CAS  PubMed  CrossRef  Google Scholar 

  25. Meistrich ML, Wilson G, Brown BW, da Cunha MF, Lipshultz LI. Impact of cyclophosphamide on long-term reduction in sperm count in men treated with combination chemotherapy for Ewing and soft tissue sarcomas. Cancer. 1992;70(11):2703–12.

    CAS  PubMed  CrossRef  Google Scholar 

  26. Chemaitilly W, Sklar CA. Endocrine complications in long-term survivors of childhood cancers. Endocr Relat Cancer. 2010;17(3):R141–59.

    CAS  PubMed  CrossRef  Google Scholar 

  27. Agarwal A, Allamaneni SR. Artificial insemination. In: Falcone T, Hurd W, editors. Clinical reproductive medicine and surgery. Philadelphia: Elsevier; 2007. p. 539–48.

    Google Scholar 

  28. Steptoe PC, Edwards RG. Birth after the reimplantation of a human embryo. Lancet. 1978;2(8085):366.

    CAS  PubMed  CrossRef  Google Scholar 

  29. Palermo G, Joris H, Devroey P, Van Steirteghem AC. Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet. 1992;340(8810):17–8.

    CAS  PubMed  CrossRef  Google Scholar 

  30. Schover LR, Brey K, Lichtin A, Lipshultz LI, Jeha S. Knowledge and experience regarding cancer, infertility, and sperm banking in younger male survivors. J Clin Oncol. 2002;20(7):1880–9.

    PubMed  CrossRef  Google Scholar 

  31. Schmiegelow ML, Sommer P, Carlsen E, Sønksen JOR, Schmiegelow K, Muller JR. Penile vibratory stimulation and electroejaculation before anticancer therapy in two pubertal boys. J Pediatr Hematol Oncol. 1998;20(5):429–30.

    CAS  PubMed  CrossRef  Google Scholar 

  32. Adank MC, van Dorp W, Smit M, van Casteren NJ, Laven JSE, Pieters R, van den Heuvel-Eibrink MM. Electroejaculation as a method of fertility preservation in boys diagnosed with cancer: a single-center experience and review of the literature. Fertil Steril. 2014;102(1):199–205.e191.

    PubMed  CrossRef  Google Scholar 

  33. Gat I, Toren A, Hourvitz A, Raviv G, Band G, Baum M, Lerner-Geva L, Inbar R, Madgar I. Sperm preservation by electroejaculation in adolescent cancer patients. Pediatr Blood Cancer. 2014;61(2):286–90.

    PubMed  CrossRef  Google Scholar 

  34. Hsiao W, Stahl PJ, Osterberg EC, Nejat E, Palermo GD, Rosenwaks Z, Schlegel PN. Successful treatment of postchemotherapy azoospermia with microsurgical testicular sperm extraction: the Weill Cornell experience. J Clin Oncol. 2011;29(12):1607–11.

    PubMed  CrossRef  Google Scholar 

  35. Picton HM, Wyns C, Anderson RA, Goossens E, Jahnukainen K, Kliesch S, Mitchell RT, Pennings G, Rives N, Tournaye H, van Pelt AM, Eichenlaub-Ritter U, Schlatt S. A European perspective on testicular tissue cryopreservation for fertility preservation in prepubertal and adolescent boysdagger. Hum Reprod. 2015;30(11):2463–75.

    PubMed  CrossRef  Google Scholar 

  36. Schiff JD, Palermo GD, Veeck LL, Goldstein M, Rosenwaks Z, Schlegel PN. Success of testicular sperm extraction [corrected] and intracytoplasmic sperm injection in men with Klinefelter syndrome. J Clin Endocrinol Metab. 2005;90(11):6263–7.

    CAS  PubMed  CrossRef  Google Scholar 

  37. Koga M, Tsujimura A, Takeyama M, Kiuchi H, Takao T, Miyagawa Y, Takada S, Matsumiya K, Fujioka H, Okamoto Y, Nonomura N, Okuyama A. Clinical comparison of successful and failed microdissection testicular sperm extraction in patients with nonmosaic Klinefelter syndrome. Urology. 2007;70(2):341–5.

    PubMed  CrossRef  Google Scholar 

  38. Yarali H, Polat M, Bozdag G, Gunel M, Alpas I, Esinler I, Dogan U, Tiras B. TESE-ICSI in patients with non-mosaic Klinefelter syndrome: a comparative study. Reprod Biomed Online. 2009;18(6):756–60.

    PubMed  CrossRef  Google Scholar 

  39. Bakircioglu ME, Ulug U, Erden HF, Tosun S, Bayram A, Ciray N, Bahceci M. Klinefelter syndrome: does it confer a bad prognosis in treatment of nonobstructive azoospermia? Fertil Steril. 2011;95(5):1696–9.

    PubMed  CrossRef  Google Scholar 

  40. Ramasamy R, Ricci JA, Palermo GD, Gosden LV, Rosenwaks Z, Schlegel PN. Successful fertility treatment for Klinefelter’s syndrome. J Urol. 2009;182(3):1108–13.

    CAS  PubMed  CrossRef  Google Scholar 

  41. Okada H, Goda K, Yamamoto Y, Sofikitis N, Miyagawa I, Mio Y, Koshida M, Horie S. Age as a limiting factor for successful sperm retrieval in patients with nonmosaic Klinefelter’s syndrome. Fertil Steril. 2005;84(6):1662–4.

    PubMed  CrossRef  Google Scholar 

  42. Mehta A, Paduch DA, Schlegel PN. Successful testicular sperm retrieval in adolescents with Klinefelter syndrome treated with at least 1 year of topical testosterone and aromatase inhibitor. Fertil Steril. 2013;100(4):e27.

    PubMed  CrossRef  Google Scholar 

  43. Wikstrom AM, Raivio T, Hadziselimovic F, Wikstrom S, Tuuri T, Dunkel L. Klinefelter syndrome in adolescence: onset of puberty is associated with accelerated germ cell depletion. J Clin Endocrinol Metab. 2004;89(5):2263–70.

    PubMed  CrossRef  CAS  Google Scholar 

  44. Aksglaede L, Wikstrom AM, Rajpert-De Meyts E, Dunkel L, Skakkebaek NE, Juul A. Natural history of seminiferous tubule degeneration in Klinefelter syndrome. Hum Reprod Update. 2006;12(1):39–48.

    PubMed  CrossRef  Google Scholar 

  45. Oates RD. Sperm retrieval in adolescents with Klinefelter syndrome. Fertil Steril. 2013;100(4):943–4.

    PubMed  CrossRef  Google Scholar 

  46. Plotton I, Giscard d’Estaing S, Cuzin B, Brosse A, Benchaib M, Lornage J, Ecochard R, Dijoud F, Lejeune H. Preliminary results of a prospective study of testicular sperm extraction in young versus adult patients with nonmosaic 47, XXY Klinefelter syndrome. J Clin Endocrinol Metab. 2015;100(3):961–7.

    CAS  PubMed  CrossRef  Google Scholar 

  47. Rives N, Milazzo JP, Perdrix A, Castanet M, Joly-Helas G, Sibert L, Bironneau A, Way A, Mace B. The feasibility of fertility preservation in adolescents with Klinefelter syndrome. Hum Reprod. 2013;28(6):1468–79.

    CAS  PubMed  CrossRef  Google Scholar 

  48. Verit FF, Verit A. Klinefelter syndrome: an argument for early aggressive hormonal and fertility management. Fertil Steril. 2012;98(5):e25. author reply e26.

    PubMed  CrossRef  Google Scholar 

  49. Fraass BA, Kinsella TJ, Harrington FS, Glatstein E. Peripheral dose to the testes: the design and clinical use of a practical and effective gonadal shield. Int J Radiat Oncol Biol Phys. 1985;11(3):609–15.

    CAS  PubMed  CrossRef  Google Scholar 

  50. Yadav P, Kozak K, Tolakanahalli R, Ramasubramanian V, Paliwal BR, Welsh JS, Rong Y. Adaptive planning using megavoltage fan-beam CT for radiation therapy with testicular shielding. Med Dosim. 2012;37(2):157–62.

    PubMed  CrossRef  Google Scholar 

  51. Sanghvi PR, Kaurin DG, McDonald TL, Holland JM. Testicular shielding in low-dose total body irradiation. Bone Marrow Transplant. 2007;39(4):247–8.

    CAS  PubMed  CrossRef  Google Scholar 

  52. Valli H, Phillips BT, Shetty G, Byrne JA, Clark AT, Meistrich ML, Orwig KE. Germline stem cells: toward the regeneration of spermatogenesis. Fertil Steril. 2014;101(1):3–13.

    PubMed  CrossRef  Google Scholar 

  53. Paniagua R, Nistal M. Morphological and histometric study of human spermatogonia from birth to the onset of puberty. J Anat. 1984;139(Pt 3):535–52.

    PubMed  PubMed Central  Google Scholar 

  54. Orwig KE, Shaw PH, Sanfilippo JS, Kauma SW, Nayak S, Cannon GM. Fertility preservation program of Magee-Womens Hospital in Pittsburgh. http://www.mwrif.org/220. Available from: http://www.mwrif.org/220.

  55. Wyns C, Curaba M, Petit S, Vanabelle B, Laurent P, Wese JF, Donnez J. Management of fertility preservation in prepubertal patients: 5 years’ experience at the Catholic University of Louvain. Hum Reprod. 2011;26(4):737–47.

    CAS  PubMed  CrossRef  Google Scholar 

  56. Ginsberg JP, Carlson CA, Lin K, Hobbie WL, Wigo E, Wu X, Brinster RL, Kolon TF. An experimental protocol for fertility preservation in prepubertal boys recently diagnosed with cancer: a report of acceptability and safety. Hum Reprod. 2010;25(1):37–41.

    CAS  PubMed  CrossRef  Google Scholar 

  57. Sadri-Ardekani H, Mizrak SC, van Daalen SK, Korver CM, Roepers-Gajadien HL, Koruji M, Hovingh S, de Reijke TM, de la Rosette JJ, van der Veen F, de Rooij DG, Repping S, van Pelt AM. Propagation of human spermatogonial stem cells in vitro. J Am Med Assoc. 2009;302(19):2127–34.

    CAS  CrossRef  Google Scholar 

  58. Sadri-Ardekani H, Akhondi MA, van der Veen F, Repping S, van Pelt AM. In vitro propagation of human prepubertal spermatogonial stem cells. J Am Med Assoc. 2011;305(23):2416–8.

    CAS  CrossRef  Google Scholar 

  59. Keros V, Hultenby K, Borgstrom B, Fridstrom M, Jahnukainen K, Hovatta O. Methods of cryopreservation of testicular tissue with viable spermatogonia in pre-pubertal boys undergoing gonadotoxic cancer treatment. Hum Reprod. 2007;22(5):1384–95.

    CAS  PubMed  CrossRef  Google Scholar 

  60. Goossens E, Van Saen D, Tournaye H. Spermatogonial stem cell preservation and transplantation: from research to clinic. Hum Reprod. 2013;28(4):897–907.

    CAS  PubMed  CrossRef  Google Scholar 

  61. Ginsberg JP. New advances in fertility preservation for pediatric cancer patients. Curr Opin Pediatr. 2011;23(1):9–13.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  62. Wyns C, Collienne C, Shenfield F, Robert A, Laurent P, Roegiers L, Brichard B. Fertility preservation in the male pediatric population: factors influencing the decision of parents and children. Hum Reprod. 2015;30:2022–30.

    CAS  PubMed  CrossRef  Google Scholar 

  63. Yango P, Altman E, Smith JF, Klatsky PC, Tran ND. Optimizing cryopreservation of human spermatogonial stem cells: comparing the effectiveness of testicular tissue and single cell suspension cryopreservation. Fertil Steril. 2014;102(5):1491–8. e1491.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  64. Pacchiarotti J, Ramos T, Howerton K, Greilach S, Zaragoza K, Olmstead M, Izadyar F. Developing a clinical-grade cryopreservation protocol for human testicular tissue and cells. BioMed Res Int. 2013;2013:10.

    CrossRef  Google Scholar 

  65. Valli H, Gassei K, Orwig KE. Stem cell therapies for male infertility: where are we now and where are we going? In: Carrell DT, Schlegel PN, Racowsky C, Gianaroli L, editors. Biennial review of infertility, vol. 4. Switzerland: Springer International Publishing; 2015. p. 17–39.

    CrossRef  Google Scholar 

  66. Wyns C, Curaba M, Martinez-Madrid B, Van Langendonckt A, Francois-Xavier W, Donnez J. Spermatogonial survival after cryopreservation and short-term orthotopic immature human cryptorchid testicular tissue grafting to immunodeficient mice. Hum Reprod. 2007;22(6):1603–11.

    PubMed  CrossRef  Google Scholar 

  67. Keros V, Rosenlund B, Hultenby K, Aghajanova L, Levkov L, Hovatta O. Optimizing cryopreservation of human testicular tissue: comparison of protocols with glycerol, propanediol and dimethylsulphoxide as cryoprotectants. Hum Reprod. 2005;20(6):1676–87.

    CAS  PubMed  CrossRef  Google Scholar 

  68. Kvist K, Thorup J, Byskov AG, Hoyer PE, Mollgard K, Yding AC. Cryopreservation of intact testicular tissue from boys with cryptorchidism. Hum Reprod. 2006;21(2):484–91.

    CAS  PubMed  CrossRef  Google Scholar 

  69. Brook PF, Radford JA, Shalet SM, Joyce AD, Gosden RG. Isolation of germ cells from human testicular tissue for low temperature storage and autotransplantation. Fertil Steril. 2001;75(2):269–74.

    CAS  PubMed  CrossRef  Google Scholar 

  70. Unni S, Kasiviswanathan S, D’Souza S, Khavale S, Mukherjee S, Patwardhan S, Bhartiya D. Efficient cryopreservation of testicular tissue: effect of age, sample state, and concentration of cryoprotectant. Fertil Steril. 2012;97(1):200–8. e201.

    CAS  PubMed  CrossRef  Google Scholar 

  71. Baert Y, Van Saen D, Haentjens P, In’t Veld P, Tournaye H, Goossens E. What is the best cryopreservation protocol for human testicular tissue banking? Hum Reprod. 2013;28:1816–26.

    CAS  PubMed  CrossRef  Google Scholar 

  72. Curaba M, Poels J, van Langendonckt A, Donnez J, Wyns C. Can prepubertal human testicular tissue be cryopreserved by vitrification? Fertil Steril. 2011;95(6):2123.e2129–12.

    CrossRef  Google Scholar 

  73. Poels J, Van Langendonckt A, Many MC, Wese FX, Wyns C. Vitrification preserves proliferation capacity in human spermatogonia. Hum Reprod. 2013;28(3):578–89.

    CAS  PubMed  CrossRef  Google Scholar 

  74. Sa R, Cremades N, Malheiro I, Sousa M. Cryopreservation of human testicular diploid germ cell suspensions. Andrologia. 2012;44(6):366–72.

    CAS  PubMed  CrossRef  Google Scholar 

  75. Brinster RL, Zimmermann JW. Spermatogenesis following male germ-cell transplantation. Proc Natl Acad Sci U S A. 1994;91(24):11298–302.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  76. Brinster RL, Avarbock MR. Germline transmission of donor haplotype following spermatogonial transplantation. Proc Natl Acad Sci U S A. 1994;91(24):11303–7.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  77. Ogawa T, Dobrinski I, Avarbock MR, Brinster RL. Transplantation of male germ line stem cells restores fertility in infertile mice. Nat Med. 2000;6(1):29–34.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  78. Shinohara T, Orwig KE, Avarbock MR, Brinster RL. Remodeling of the postnatal mouse testis is accompanied by dramatic changes in stem cell number and niche accessibility. Proc Natl Acad Sci U S A. 2001;98(11):6186–91.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  79. Nagano M, Brinster CJ, Orwig KE, Ryu BY, Avarbock MR, Brinster RL. Transgenic mice produced by retroviral transduction of male germ-line stem cells. Proc Natl Acad Sci U S A. 2001;98(23):13090–5.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  80. Brinster CJ, Ryu BY, Avarbock MR, Karagenc L, Brinster RL, Orwig KE. Restoration of fertility by germ cell transplantation requires effective recipient preparation. Biol Reprod. 2003;69(2):412–20.

    CAS  PubMed  CrossRef  Google Scholar 

  81. Honaramooz A, Behboodi E, Megee SO, Overton SA, Galantino-Homer H, Echelard Y, Dobrinski I. Fertility and germline transmission of donor haplotype following germ cell transplantation in immunocompetent goats. Biol Reprod. 2003;69(4):1260–4.

    CAS  PubMed  CrossRef  Google Scholar 

  82. Mikkola M, Sironen A, Kopp C, Taponen J, Sukura A, Vilkki J, Katila T, Andersson M. Transplantation of normal boar testicular cells resulted in complete focal spermatogenesis in a boar affected by the immotile short-tail sperm defect. Reprod Domest Anim (Zuchthygiene). 2006;41(2):124–8.

    CAS  CrossRef  Google Scholar 

  83. Kim Y, Turner D, Nelson J, Dobrinski I, McEntee M, Travis AJ. Production of donor-derived sperm after spermatogonial stem cell transplantation in the dog. Reproduction. 2008;136(6):823–31.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  84. Herrid M, Olejnik J, Jackson M, Suchowerska N, Stockwell S, Davey R, Hutton K, Hope S, Hill JR. Irradiation enhances the efficiency of testicular germ cell transplantation in sheep. Biol Reprod. 2009;81(5):898–905.

    CAS  PubMed  CrossRef  Google Scholar 

  85. Hermann BP, Sukhwani M, Winkler F, Pascarella JN, Peters KA, Sheng Y, Valli H, Rodriguez M, Ezzelarab M, Dargo G, Peterson K, Masterson K, Ramsey C, Ward T, Lienesch M, Volk A, Cooper DK, Thomson AW, Kiss JE, Penedo MC, Schatten GP, Mitalipov S, Orwig KE. Spermatogonial stem cell transplantation into rhesus testes regenerates spermatogenesis producing functional sperm. Cell Stem Cell. 2012;11(5):715–26.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  86. Izadyar F, Den Ouden K, Stout TA, Stout J, Coret J, Lankveld DP, Spoormakers TJ, Colenbrander B, Oldenbroek JK, Van der Ploeg KD, Woelders H, Kal HB, De Rooij DG. Autologous and homologous transplantation of bovine spermatogonial stem cells. Reproduction. 2003;126(6):765–74.

    CAS  PubMed  CrossRef  Google Scholar 

  87. Schlatt S, Foppiani L, Rolf C, Weinbauer GF, Nieschlag E. Germ cell transplantation into X-irradiated monkey testes. Hum Reprod. 2002;17(1):55–62.

    CAS  PubMed  CrossRef  Google Scholar 

  88. Jahnukainen K, Ehmcke J, Quader MA, Saiful Huq M, Epperly MW, Hergenrother S, Nurmio M, Schlatt S. Testicular recovery after irradiation differs in prepubertal and pubertal non-human primates, and can be enhanced by autologous germ cell transplantation. Hum Reprod. 2011;26(8):1945–54.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  89. Ryu BY, Orwig KE, Avarbock MR, Brinster RL. Stem cell and niche development in the postnatal rat testis. Dev Biol. 2003;263(2):253–63.

    CAS  PubMed  CrossRef  Google Scholar 

  90. Dobrinski I, Avarbock MR, Brinster RL. Transplantation of germ cells from rabbits and dogs into mouse testes. Biol Reprod. 1999;61(5):1331–9.

    CAS  PubMed  CrossRef  Google Scholar 

  91. Dobrinski I, Avarbock MR, Brinster RL. Germ cell transplantation from large domestic animals into mouse testes. Mol Reprod Dev. 2000;57(3):270–9.

    CAS  PubMed  CrossRef  Google Scholar 

  92. Radford JA, Shalet SM, Lieberman BA. Fertility after treatment for cancer. BMJ. 1999;319(7215):935–6.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  93. Radford J. Restoration of fertility after treatment for cancer. Horm Res. 2003;59 Suppl 1:21–3.

    CAS  PubMed  Google Scholar 

  94. Valli H, Sukhwani M, Dovey SL, Peters KA, Donohue J, Castro CA, Chu T, Marshall GR, Orwig KE. Fluorescence- and magnetic-activated cell sorting strategies to isolate and enrich human spermatogonial stem cells. Fertil Steril. 2014;102(2):566–80.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  95. Hamra FK, Chapman KM, Nguyen DM, Williams-Stephens AA, Hammer RE, Garbers DL. Self renewal, expansion, and transfection of rat spermatogonial stem cells in culture. Proc Natl Acad Sci U S A. 2005;102(48):17430–5.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  96. Richardson TE, Chapman KM, Tenenhaus Dann C, Hammer RE, Hamra FK. Sterile testis complementation with spermatogonial lines restores fertility to DAZL-deficient rats and maximizes donor germline transmission. PLoS ONE. 2009;4(7):e6308.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  97. Ryu BY, Kubota H, Avarbock MR, Brinster RL. Conservation of spermatogonial stem cell self-renewal signaling between mouse and rat. Proc Natl Acad Sci U S A. 2005;102(40):14302–7.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  98. Kanatsu-Shinohara M, Ogonuki N, Inoue K, Miki H, Ogura A, Toyokuni S, Shinohara T. Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biol Reprod. 2003;69(2):612–6.

    CAS  PubMed  CrossRef  Google Scholar 

  99. Kubota H, Avarbock MR, Brinster RL. Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc Natl Acad Sci U S A. 2004;101(47):16489–94.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  100. Kanatsu-Shinohara M, Muneto T, Lee J, Takenaka M, Chuma S, Nakatsuji N, Horiuchi T, Shinohara T. Long-term culture of male germline stem cells from hamster testes. Biol Reprod. 2008;78(4):611–7.

    CAS  PubMed  CrossRef  Google Scholar 

  101. Wu X, Schmidt JA, Avarbock MR, Tobias JW, Carlson CA, Kolon TF, Ginsberg JP, Brinster RL. Prepubertal human spermatogonia and mouse gonocytes share conserved gene expression of germline stem cell regulatory molecules. Proc Natl Acad Sci U S A. 2009;106(51):21672–7.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  102. He Z, Kokkinaki M, Jiang J, Dobrinski I, Dym M. Isolation, characterization, and culture of human spermatogonia. Biol Reprod. 2010;82(2):363–72.

    CAS  PubMed  CrossRef  Google Scholar 

  103. Mirzapour T, Movahedin M, Tengku Ibrahim TA, Koruji M, Haron AW, Nowroozi MR, Rafieian SH. Effects of basic fibroblast growth factor and leukaemia inhibitory factor on proliferation and short-term culture of human spermatogonial stem cells. Andrologia. 2012;44:41–55.

    PubMed  CrossRef  CAS  Google Scholar 

  104. Chen B, Wang YB, Zhang ZL, Xia WL, Wang HX, Xiang ZQ, Hu K, Han YF, Wang YX, Huang YR, Wang Z. Xeno-free culture of human spermatogonial stem cells supported by human embryonic stem cell-derived fibroblast-like cells. Asian J Androl. 2009;11(5):557–65.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  105. Kokkinaki M, Djourabtchi A, Golestaneh N. Long-term culture of human SSEA-4 positive spermatogonial stem cells (SSCs). J Stem Cell Res Ther. 2011;2(2):pii: 2488.

    Google Scholar 

  106. Liu S, Tang Z, Xiong T, Tang W. Isolation and characterization of human spermatogonial stem cells. Reprod Biol Endocrinol RB&E. 2011;9:141.

    CrossRef  Google Scholar 

  107. Smith JF, Yango P, Altman E, Choudhry S, Poelzl A, Zamah AM, Rosen M, Klatsky PC, Tran ND. Testicular niche required for human spermatogonial stem cell expansion. Stem Cells Transl Med. 2014;3(9):1043–54.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  108. Nowroozi MR, Ahmadi H, Rafiian S, Mirzapour T, Movahedin M. In vitro colonization of human spermatogonia stem cells: effect of patient’s clinical characteristics and testicular histologic findings. Urology. 2011;78(5):1075–81.

    PubMed  CrossRef  Google Scholar 

  109. Piravar Z, Jeddi-Tehrani M, Sadeghi MR, Mohazzab A, Eidi A, Akhondi MM. In vitro culture of human testicular stem cells on feeder-free condition. J Reprod Infertility. 2013;14(1):17–22.

    CAS  Google Scholar 

  110. Kim TH, Hargreaves HK, Brynes RK, Hawkins HK, Lui VK, Woodard J, Ragab AH. Pretreatment testicular biopsy in childhood acute lymphocytic leukaemia. Lancet. 1981;2(8248):657–8.

    CAS  PubMed  CrossRef  Google Scholar 

  111. Jahnukainen K, Hou M, Petersen C, Setchell B, Soder O. Intratesticular transplantation of testicular cells from leukemic rats causes transmission of leukemia. Cancer Res. 2001;61(2):706–10.

    CAS  PubMed  Google Scholar 

  112. Izadyar F, Wong J, Maki C, Pacchiarotti J, Ramos T, Howerton K, Yuen C, Greilach S, Zhao HH, Chow M, Chow YC, Rao J, Barritt J, Bar-Chama N, Copperman A. Identification and characterization of repopulating spermatogonial stem cells from the adult human testis. Hum Reprod. 2011;26(6):1296–306.

    PubMed  CrossRef  Google Scholar 

  113. Zohni K, Zhang X, Tan SL, Chan P, Nagano M. CD9 is expressed on human male germ cells that have a long-term repopulation potential after transplantation into mouse testes. Biol Reprod. 2012;87(2):27.

    PubMed  CrossRef  Google Scholar 

  114. Dovey SL, Valli H, Hermann BP, Sukhwani M, Donohue J, Castro CA, Chu T, Sanfilippo JS, Orwig KE. Eliminating malignant contamination from therapeutic human spermatogonial stem cells. J Clin Invest. 2013;123(4):1833–43.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  115. Fujita K, Ohta H, Tsujimura A, Takao T, Miyagawa Y, Takada S, Matsumiya K, Wakayama T, Okuyama A. Transplantation of spermatogonial stem cells isolated from leukemic mice restores fertility without inducing leukemia. J Clin Investig. 2005;115(7):1855–61.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  116. Fujita K, Tsujimura A, Miyagawa Y, Kiuchi H, Matsuoka Y, Takao T, Takada S, Nonomura N, Okuyama A. Isolation of germ cells from leukemia and lymphoma cells in a human in vitro model: potential clinical application for restoring human fertility after anticancer therapy. Cancer Res. 2006;66(23):11166–71.

    CAS  PubMed  CrossRef  Google Scholar 

  117. Hou M, Andersson M, Zheng C, Sundblad A, Soder O, Jahnukainen K. Decontamination of leukemic cells and enrichment of germ cells from testicular samples from rats with Roser’s T-cell leukemia by flow cytometric sorting. Reproduction. 2007;134(6):767–79.

    CAS  PubMed  CrossRef  Google Scholar 

  118. Hermann BP, Sukhwani M, Salati J, Sheng Y, Chu T, Orwig KE. Separating spermatogonia from cancer cells in contaminated prepubertal primate testis cell suspensions. Hum Reprod. 2011;26(12):3222–31.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  119. Geens M, Van de Velde H, De Block G, Goossens E, Van Steirteghem A, Tournaye H. The efficiency of magnetic-activated cell sorting and fluorescence-activated cell sorting in the decontamination of testicular cell suspensions in cancer patients. Hum Reprod. 2007;22(3):733–42.

    CAS  PubMed  CrossRef  Google Scholar 

  120. Dolmans MM, Marinescu C, Saussoy P, Van Langendonckt A, Amorim C, Donnez J. Reimplantation of cryopreserved ovarian tissue from patients with acute lymphoblastic leukemia is potentially unsafe. Blood. 2010;116(16):2908–14.

    CAS  PubMed  CrossRef  Google Scholar 

  121. Rosendahl M, Andersen MT, Ralfkiaer E, Kjeldsen L, Andersen MK, Andersen CY. Evidence of residual disease in cryopreserved ovarian cortex from female patients with leukemia. Fertil Steril. 2010;94(6):2186–90.

    PubMed  CrossRef  Google Scholar 

  122. Dufour JM, Rajotte RV, Korbutt GS. Development of an in vivo model to study testicular morphogenesis. J Androl. 2002;23(5):635–44.

    PubMed  Google Scholar 

  123. Gassei K, Schlatt S, Ehmcke J. De novo morphogenesis of seminiferous tubules from dissociated immature rat testicular cells in xenografts. J Androl. 2006;27(4):611–8.

    PubMed  CrossRef  Google Scholar 

  124. Kita K, Watanabe T, Ohsaka K, Hayashi H, Kubota Y, Nagashima Y, Aoki I, Taniguchi H, Noce T, Inoue K, Miki H, Ogonuki N, Tanaka H, Ogura A, Ogawa T. Production of functional spermatids from mouse germline stem cells in ectopically reconstituted seminiferous tubules. Biol Reprod. 2007;76(2):211–7.

    CAS  PubMed  CrossRef  Google Scholar 

  125. Honaramooz A, Megee SO, Rathi R, Dobrinski I. Building a testis: formation of functional testis tissue after transplantation of isolated porcine (Sus scrofa) testis cells. Biol Reprod. 2007;76(1):43–7.

    CAS  PubMed  CrossRef  Google Scholar 

  126. Arregui L, Rathi R, Megee SO, Honaramooz A, Gomendio M, Roldan ER, Dobrinski I. Xenografting of sheep testis tissue and isolated cells as a model for preservation of genetic material from endangered ungulates. Reproduction. 2008;136(1):85–93.

    CAS  PubMed  CrossRef  Google Scholar 

  127. Baert Y, Stukenborg JB, Landreh M, De Kock J, Jornvall H, Soder O, Goossens E. Derivation and characterization of a cytocompatible scaffold from human testis. Hum Reprod. 2015;30(2):256–67.

    CAS  PubMed  CrossRef  Google Scholar 

  128. Honaramooz A, Snedaker A, Boiani M, Scholer H, Dobrinski I, Schlatt S. Sperm from neonatal mammalian testes grafted in mice. Nature. 2002;418(6899):778–81.

    CAS  PubMed  CrossRef  Google Scholar 

  129. Schlatt S, Honaramooz A, Boiani M, Scholer HR, Dobrinski I. Progeny from sperm obtained after ectopic grafting of neonatal mouse testes. Biol Reprod. 2003;68(6):2331–5.

    CAS  PubMed  CrossRef  Google Scholar 

  130. Honaramooz A, Li MW, Penedo MCT, Meyers S, Dobrinski I. Accelerated maturation of primate testis by xenografting into mice. Biol Reprod. 2004;70(5):1500–3.

    CAS  PubMed  CrossRef  Google Scholar 

  131. Jamieson SW, Madani MM. The choice of valve protheses*. J Am Coll Cardiol. 2004;44(2):389–90.

    PubMed  CrossRef  Google Scholar 

  132. Andreas M, Wallner S, Ruetzler K, Wiedemann D, Ehrlich M, Heinze G, Binder T, Moritz A, Hiesmayr MJ, Kocher A, Laufer G. Comparable long-term results for porcine and pericardial prostheses after isolated aortic valve replacement. Eur J Cardiothorac Surg. 2014;18:2014.

    Google Scholar 

  133. Cozzi E, White DJ. The generation of transgenic pigs as potential organ donors for humans. Nat Med. 1995;1(9):964–6.

    CAS  PubMed  CrossRef  Google Scholar 

  134. Kimsa MC, Strzalka-Mrozik B, Kimsa MW, Gola J, Nicholson P, Lopata K, Mazurek U. Porcine endogenous retroviruses in xenotransplantation—molecular aspects. Viruses. 2014;6(5):2062–83.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  135. Weiss RA. The discovery of endogenous retroviruses. Retrovirology. 2006;3:67.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  136. Geens M, De Block G, Goossens E, Frederickx V, Van Steirteghem A, Tournaye H. Spermatogonial survival after grafting human testicular tissue to immunodeficient mice. Hum Reprod. 2006;21(2):390–6.

    PubMed  CrossRef  Google Scholar 

  137. Goossens E, Geens M, De Block G, Tournaye H. Spermatogonial survival in long-term human prepubertal xenografts. Fertil Steril. 2008;90(5):2019–22.

    PubMed  CrossRef  Google Scholar 

  138. Van Saen D, Goossens E, Bourgain C, Ferster A, Tournaye H. Meiotic activity in orthotopic xenografts derived from human postpubertal testicular tissue. Hum Reprod. 2011;26(2):282–93.

    PubMed  CrossRef  Google Scholar 

  139. Schlatt S, Honaramooz A, Ehmcke J, Goebell PJ, Rubben H, Dhir R, Dobrinski I, Patrizio P. Limited survival of adult human testicular tissue as ectopic xenograft. Hum Reprod. 2006;21(2):384–9.

    CAS  PubMed  CrossRef  Google Scholar 

  140. Sato Y, Nozawa S, Yoshiike M, Arai M, Sasaki C, Iwamoto T. Xenografting of testicular tissue from an infant human donor results in accelerated testicular maturation. Hum Reprod. 2010;25(5):1113–22.

    CAS  PubMed  CrossRef  Google Scholar 

  141. Wyns C, Van Langendonckt A, Wese FX, Donnez J, Curaba M. Long-term spermatogonial survival in cryopreserved and xenografted immature human testicular tissue. Hum Reprod. 2008;23(11):2402–14.

    PubMed  CrossRef  Google Scholar 

  142. Luetjens CM, Stukenborg J-B, Nieschlag E, Simoni M, Wistuba J. Complete spermatogenesis in orthotopic but not in ectopic transplants of autologously grafted marmoset testicular tissue. Endocrinology. 2008;149(4):1736–47.

    CAS  PubMed  CrossRef  Google Scholar 

  143. Sato T, Katagiri K, Gohbara A, Inoue K, Ogonuki N, Ogura A, Kubota Y, Ogawa T. In vitro production of functional sperm in cultured neonatal mouse testes. Nature. 2011;471(7339):504–7.

    CAS  PubMed  CrossRef  Google Scholar 

  144. Sato T, Katagiri K, Kubota Y, Ogawa T. In vitro sperm production from mouse spermatogonial stem cell lines using an organ culture method. Nat Protoc. 2013;8(11):2098–104.

    CAS  PubMed  CrossRef  Google Scholar 

  145. Hayashi K, Ohta H, Kurimoto K, Aramaki S, Saitou M. Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell. 2011;146(4):519–32.

    CAS  PubMed  CrossRef  Google Scholar 

  146. Sasaki K, Yokobayashi S, Nakamura T, Okamoto I, Yabuta Y, Kurimoto K, Ohta H, Moritoki Y, Iwatani C, Tsuchiya H, Nakamura S, Sekiguchi K, Sakuma T, Yamamoto T, Mori T, Woltjen K, Nakagawa M, Yamamoto T, Takahashi K, Yamanaka S, Saitou M. Robust in vitro induction of human germ cell fate from pluripotent stem cells. Cell Stem Cell. 2015;17(2):178–94.

    CAS  PubMed  CrossRef  Google Scholar 

  147. Irie N, Weinberger L, Tang WW, Kobayashi T, Viukov S, Manor YS, Dietmann S, Hanna JH, Surani MA. SOX17 is a critical specifier of human primordial germ cell fate. Cell. 2015;160(1–2):253–68.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  148. Teramura T, Takehara T, Kawata N, Fujinami N, Mitani T, Takenoshita M, Matsumoto K, Saeki K, Iritani A, Sagawa N, Hosoi Y. Primate embryonic stem cells proceed to early gametogenesis in vitro. Cloning Stem Cells. 2007;9(2):144–56.

    CAS  PubMed  CrossRef  Google Scholar 

  149. Yamauchi K, Hasegawa K, Chuma S, Nakatsuji N, Suemori H. In vitro germ cell differentiation from cynomolgus monkey embryonic stem cells. PLoS ONE. 2009;4(4):e5338.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  150. Park TS, Galic Z, Conway AE, Lindgren A, van Handel BJ, Magnusson M, Richter L, Teitell MA, Mikkola HK, Lowry WE, Plath K, Clark AT. Derivation of primordial germ cells from human embryonic and induced pluripotent stem cells is significantly improved by coculture with human fetal gonadal cells. Stem Cells. 2009;27(4):783–95.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  151. Easley CA, Phillips BT, McGuire MM, Barringer JM, Valli H, Hermann BP, Simerly CR, Rajkovic A, Miki T, Orwig KE, Schatten GP. Direct differentiation of human pluripotent stem cells into haploid spermatogenic cells. Cell Rep. 2012;2(3):440–6.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  152. Kee K, Gonsalves JM, Clark AT, Pera RA. Bone morphogenetic proteins induce germ cell differentiation from human embryonic stem cells. Stem Cells Dev. 2006;15(6):831–7.

    CAS  PubMed  CrossRef  Google Scholar 

  153. Kee K, Angeles VT, Flores M, Nguyen HN, Reijo Pera RA. Human DAZL, DAZ and BOULE genes modulate primordial germ-cell and haploid gamete formation. Nature. 2009;462(7270):222–5.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  154. Durruthy Durruthy J, Ramathal C, Sukhwani M, Fang F, Cui J, Orwig KE, Reijo Pera RA. Fate of induced pluripotent stem cells following transplantation to murine seminiferous tubules. Hum Mol Genet. 2014;23(12):3071–84.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  155. Ramathal C, Durruthy-Durruthy J, Sukhwani M, Arakaki JE, Turek PJ, Orwig KE, Reijo Pera RA. Fate of iPSCs derived from azoospermic and fertile men following xenotransplantation to murine seminiferous tubules. Cell Rep. 2014;7(4):1284–97.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  156. Ramathal C, Angulo B, Sukhwani M, Cui J, Durruthy-Durruthy J, Fang F, Schanes P, Turek PJ, Orwig KE, Reijo Pera R. DDX3Y gene rescue of a Y chromosome AZFa deletion restores germ cell formation and transcriptional programs. Sci Rep. 2015;5:15041.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  157. Panula S, Medrano JV, Kee K, Bergstrom R, Nguyen HN, Byers B, Wilson KD, Wu JC, Simon C, Hovatta O, Reijo Pera RA. Human germ cell differentiation from fetal- and adult-derived induced pluripotent stem cells. Hum Mol Genet. 2011;20(4):752–62.

    CAS  PubMed  CrossRef  Google Scholar 

  158. Dominguez AA, Chiang HR, Sukhwani M, Orwig KE, Reijo Pera RA. Human germ cell formation in xenotransplants of induced pluripotent stem cells carrying X chromosome aneuploidies. Sci Rep. 2014;4:6432.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  159. Easley CA, Simerly CR, Schatten G. Stem cell therapeutic possibilities: future therapeutic options for male-factor and female-factor infertility? Reprod Biomed Online. 2013;27(1):75–80.

    PubMed  PubMed Central  CrossRef  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Scaife Foundation, the Richard King Mellon Foundation, the Magee-Womens Research Institute and Foundation, the Children’s Hospital of Pittsburgh Foundation, and the University of Pittsburgh Departments of Obstetrics, Gynecology & Reproductive Sciences and Urology, which have generously provided funds to support the Fertility Preservation Program in Pittsburgh (http://www.mwrif.org/220). It is in this context that we have had the opportunity to meet the infertile patients that fuel our passion for fertility research. The Orwig lab is supported by the Magee-Womens Research Institute and Foundation, the Eunice Kennedy Shriver National Institute of Child Health and Human Development grants HD075795 and HD076412, the USA-Israel Binational Science Foundation, and gift funds from Montana State University, Sylvia Bernassoli, and Julie and Michael McMullen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyle E. Orwig PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gassei, K., Shaw, P.H., Cannon, G.M., Meacham, L.R., Orwig, K.E. (2017). Male Fertility Preservation: Current Options and Advances in Research. In: Woodruff, T., Gosiengfiao, Y. (eds) Pediatric and Adolescent Oncofertility. Springer, Cham. https://doi.org/10.1007/978-3-319-32973-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32973-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32971-0

  • Online ISBN: 978-3-319-32973-4

  • eBook Packages: MedicineMedicine (R0)