Skip to main content

Opportunities for Enabling Puberty

Abstract

Puberty marks the transition from adolescence to adulthood and refers to physical and psychological changes as a result of the changes in male or female hormonal milieu during this critical point in development. Puberty establishes the hypothalamic-pituitary-gonadal axis, with the underlying goal of establishing reproductive maturity. Additionally, the transition through puberty solidifies development of hormone-responsive organ systems, such as neuronal, cardiovascular, and skeletal tissues. There are several ways in which this transition can be disrupted, including from naturally occurring mutations or from secondary effects of disease treatments that affect gonadal health or the health of other organs along this axis. This chapter will briefly describe the potential causes of delayed or failed puberty initiation and delve into the experimental paradigms undergoing investigation as a way to initiate puberty, restore fertility, and maintain endocrine support throughout a patient’s adult life.

Keywords

  • Growth Hormone
  • Luteinizing Hormone
  • Granulosa Cell
  • Sertoli Cell
  • Assist Reproductive Technology

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-32973-4_7
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-32973-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 7.1

References

  1. McGee EA, Hsu SY, Kaipia A, Hsueh AJ. Cell death and survival during ovarian follicle development. Mol Cell Endocrinol. 1998;140:15–8.

    CAS  PubMed  CrossRef  Google Scholar 

  2. Zheng W, Zhang H, Gorre N, Risal S, Shen Y, Liu K. Two classes of ovarian primordial follicles exhibit distinct developmental dynamics and physiological functions. Hum Mol Genet. 2014;23:920–8. doi:10.1093/hmg/ddt486.

    CAS  PubMed  CrossRef  Google Scholar 

  3. Cordeiro MH, Kim S-Y, Ebbert K, Duncan FE, Ramalho-Santos J, Woodruff TK. Geography of follicle formation in the embryonic mouse ovary impacts activation pattern during the first wave of folliculogenesis. Biol Reprod. 2015:1–19. doi:10.1095/biolreprod.115.131227.

  4. Mork L, Maatouk DM, McMahon JA, Guo JJ, Zhang P, McMahon AP, et al. Temporal differences in granulosa cell specification in the ovary reflect distinct follicle fates in mice. Biol Reprod. 2012;86:37. doi:10.1095/biolreprod.111.095208.

    PubMed  CrossRef  CAS  Google Scholar 

  5. Harikae K, Miura K, Shinomura M, Matoba S, Hiramatsu R, Tsunekawa N, et al. Heterogeneity in sexual bipotentiality and plasticity of granulosa cells in developing mouse ovaries. J Cell Sci. 2013;126:2834–44. doi:10.1242/jcs.122663. The Company of Biologists Ltd.

    CAS  PubMed  CrossRef  Google Scholar 

  6. Muttukrishna S, Child T, Lockwood GM, Groome NP, Barlow DH, Ledger WL. Serum concentrations of dimeric inhibins, activin A, gonadotrophins and ovarian steroids during the menstrual cycle in older women. Hum Reprod. 2000;15:549–56.

    CAS  PubMed  CrossRef  Google Scholar 

  7. Matzuk MM, Finegold MJ, Su JG, Hsueh AJ, Bradley A. Alpha-inhibin is a tumour-suppressor gene with gonadal specificity in mice. Nature (Nature Publishing Group). 1992;360:313–9. doi:10.1038/360313a0.

    CAS  Google Scholar 

  8. Hild-Petito S, Stouffer RL, Brenner RM. Immunocytochemical localization of estradiol and progesterone receptors in the monkey ovary throughout the menstrual cycle*. Endocrinology (The Endocrine Society). 1988;123:2896–905. doi:10.1210/endo-123-6-2896.

    CAS  Google Scholar 

  9. Natraj U, Richards JS. Hormonal regulation, localization, and functional activity of the progesterone receptor in granulosa cells of rat preovulatory follicles. Endocrinology. 1993;133:761–9. doi:10.1210/endo.133.2.8344215.

    CAS  PubMed  Google Scholar 

  10. Mahmood T, Saridogan E, Smutna S, Habib AM, Djahanbakhch O. The effect of ovarian steroids on epithelial ciliary beat frequency in the human Fallopian tube. Hum Reprod. 1998;13:2991–4.

    CAS  PubMed  CrossRef  Google Scholar 

  11. Wanggren K, Stavreus-Evers A, Olsson C, Andersson E, Gemzell-Danielsson K. Regulation of muscular contractions in the human Fallopian tube through prostaglandins and progestagens. Hum Reprod. 2008;23:2359–68. doi:10.1093/humrep/den260.

    CAS  PubMed  CrossRef  Google Scholar 

  12. Verhage HG, Fazleabas AT, Mavrogianis PA, O’Day-Bowman MB, Donnelly KM, Arias EB, et al. The baboon oviduct: characteristics of an oestradiol-dependent oviduct-specific glycoprotein. Hum Reprod Update. 1997;3:541–52.

    CAS  PubMed  CrossRef  Google Scholar 

  13. Lydon JP, Demayo FJ, Funk CR, Mani SK, Hughes AR, Montgomery CA, et al. Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev (Cold Spring Harbor Lab). 1995;9:2266–78. doi:10.1101/gad.9.18.2266.

    CAS  Google Scholar 

  14. Cha J, Sun X, Dey SK. Mechanisms of implantation: strategies for successful pregnancy. Nat Med. 2012;18:1754–67. doi:10.1038/nm.3012.

    CAS  PubMed  CrossRef  Google Scholar 

  15. Kastner P, Krust A, Turcotte B, Stropp U, Tora L, Gronemeyer H, et al. Two distinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptor forms A and B. EMBO J Eur Mol Biol Organ. 1990;9:1603–14.

    CAS  Google Scholar 

  16. Hay DL. Placental histology and the production of human choriogonadotrophin and its subunits in pregnancy. Br J Obstet Gynaecol. 1988;95:1268–75.

    CAS  PubMed  CrossRef  Google Scholar 

  17. Gorodeski GI, Hopfer U, Liu CC, Margles E. Estrogen acidifies vaginal pH by up-regulation of proton secretion via the apical membrane of vaginal-ectocervical epithelial cells. Endocrinology. 2005;146:816–24. doi:10.1210/en.2004-1153.

    CAS  PubMed  CrossRef  Google Scholar 

  18. Gorodeski GI. Estrogen increases the permeability of the cultured human cervical epithelium by modulating cell deformability. Am J Physiol. 1998;275:C888–99.

    CAS  PubMed  Google Scholar 

  19. Heller CG, Clermont Y. Spermatogenesis in man: an estimate of its duration. Science. 1963;140:184–6.

    CAS  PubMed  CrossRef  Google Scholar 

  20. Hasegawa K, Saga Y. Retinoic acid signaling in Sertoli cells regulates organization of the blood-testis barrier through cyclical changes in gene expression. Development. 2012;139:4347–55. doi:10.1242/dev.080119.

    CAS  PubMed  CrossRef  Google Scholar 

  21. Russell LD. The blood-testis barrier and its formation relative to spermatocyte maturation in the adult rat: a lanthanum tracer study. Anat Rec. 1978;190:99–111. doi:10.1002/ar.1091900109.

    CAS  PubMed  CrossRef  Google Scholar 

  22. Russell LD, Malone JP. A study of Sertoli-spermatid tubulobulbar complexes in selected mammals. Tissue Cell. 1980;12:263–85.

    CAS  PubMed  CrossRef  Google Scholar 

  23. Russell LD, Lee IP, Ettlin R, Peterson RN. Development of the acrosome and alignment, elongation and entrenchment of spermatids in procarbazine-treated rats. Tissue Cell. 1983;15:615–26.

    CAS  PubMed  CrossRef  Google Scholar 

  24. Sprando RL, Russell LD. Comparative study of cytoplasmic elimination in spermatids of selected mammalian species. Am J Anat. 1987;178:72–80. doi:10.1002/aja.1001780109.

    CAS  PubMed  CrossRef  Google Scholar 

  25. Hayashi M, Fujimoto S, Takano H, Ushiki T, Abe K, Ishikura H, et al. Characterization of a human glycoprotein with a potential role in sperm-egg fusion: cDNA cloning, immunohistochemical localization, and chromosomal assignment of the gene (AEGL1). Genomics. 1996;32:367–74. doi:10.1006/geno.1996.0131.

    CAS  PubMed  CrossRef  Google Scholar 

  26. Maldera JA, Weigel Munoz M, Chirinos M, Busso D, GE Raffo F, Battistone MA, et al. Human fertilization: epididymal hCRISP1 mediates sperm-zona pellucida binding through its interaction with ZP3. Mol Hum Reprod (Oxford University Press). 2014;20:341–9. doi:10.1093/molehr/gat092.

    CAS  CrossRef  Google Scholar 

  27. Bremner WJ, Millar MR, Sharpe RM, Saunders PT. Immunohistochemical localization of androgen receptors in the rat testis: evidence for stage-dependent expression and regulation by androgens. Endocrinology. 1994;135:1227–34. doi:10.1210/endo.135.3.8070367.

    CAS  PubMed  Google Scholar 

  28. O’Shaughnessy PJ, Monteiro A, Abel M. Testicular development in mice lacking receptors for follicle stimulating hormone and androgen. Lobaccaro J-MA, editor. PLoS ONE. 2012;7:e35136–9. doi:10.1371/journal.pone.0035136.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  29. George JW, Dille EA, Heckert LL. Current concepts of follicle-stimulating hormone receptor gene regulation. Biol Reprod (Society for the Study of Reproduction). 2011;84:7–17. doi:10.1095/biolreprod.110.085043.

    CAS  CrossRef  Google Scholar 

  30. Juul A, Bang P, Hertel NT, Main K, Dalgaard P, Jørgensen K, et al. Serum insulin-like growth factor-I in 1030 healthy children, adolescents, and adults: relation to age, sex, stage of puberty, testicular size, and body mass index. J Clin Endocrinol Metab. 1994;78:744–52. doi:10.1210/jcem.78.3.8126152.

    CAS  PubMed  Google Scholar 

  31. Veldhuis JD, Roemmich JN, Rogol AD. Gender and sexual maturation-dependent contrasts in the neuroregulation of growth hormone secretion in prepubertal and late adolescent males and females – a general clinical research center-based study. J Clin Endocrinol Metab. 2000;85:2385–94. doi:10.1210/jcem.85.7.6697.

    CAS  PubMed  Google Scholar 

  32. Keenan BS, Richards GE, Ponder SW, Dallas JS, Nagamani M, Smith ER. Androgen-stimulated pubertal growth: the effects of testosterone and dihydrotestosterone on growth hormone and insulin-like growth factor-I in the treatment of short stature and delayed puberty. J Clin Endocrinol Metab. 1993;76:996–1001. doi:10.1210/jcem.76.4.8473416.

    CAS  PubMed  Google Scholar 

  33. Veldhuis JD, Metzger DL, Martha PM, Mauras N, Kerrigan JR, Keenan B, et al. Estrogen and testosterone, but not a nonaromatizable androgen, direct network integration of the hypothalamo-somatotrope (growth hormone)-insulin-like growth factor I axis in the human: evidence from pubertal pathophysiology and sex-steroid hormone replacement. J Clin Endocrinol Metab. 1997;82:3414–20. doi:10.1210/jcem.82.10.4317.

    CAS  PubMed  Google Scholar 

  34. Ho KY, Evans WS, Blizzard RM, Veldhuis JD, Merriam GR, Samojlik E, et al. Effects of sex and age on the 24-hour profile of growth hormone secretion in man: importance of endogenous estradiol concentrations*. J Clin Endocrinol Metab (The Endocrine Society). 1987;64:51–8. doi:10.1210/jcem-64-1-51.

    CAS  CrossRef  Google Scholar 

  35. van den Berg G, Veldhuis JD, Frolich M, Roelfsema F. An amplitude-specific divergence in the pulsatile mode of growth hormone (GH) secretion underlies the gender difference in mean GH concentrations in men and premenopausal women. J Clin Endocrinol Metab. 1996;81:2460–7. doi:10.1210/jcem.81.7.8675561.

    PubMed  Google Scholar 

  36. Faria ACS, Bekenstein LW, Booth RA, Vaccaro VA, Asplin CM, Veldhuls JD, et al. Pulsatile growth hormone release in normal women during the menstrual cycle. Clin Endocrinol (Blackwell Publishing Ltd). 1992;36:591–6. doi:10.1111/j.1365-2265.1992.tb02270.x.

    CAS  CrossRef  Google Scholar 

  37. Nilsson O, Marino R, De Luca F, Phillip M, Baron J. Endocrine regulation of the growth plate. Horm Res (Karger Publishers). 2005;64:157–65. doi:10.1159/000088791.

    CAS  Google Scholar 

  38. Ben-Hur H, Thole HH, Mashiah A, Insler V, Berman V, Shezen E, et al. Estrogen, progesterone and testosterone receptors in human fetal cartilaginous tissue: immunohistochemical studies. Calcif Tissue Int. 1997;60:520–6.

    CAS  PubMed  CrossRef  Google Scholar 

  39. Ren SG, Malozowski S, Sanchez P, Sweet DE, Loriaux DL, Cassorla F. Direct administration of testosterone increases rat tibial epiphyseal growth plate width. Acta Endocrinol (European Society of Endocrinology). 1989;121:401–5. doi:10.1530/acta.0.1210401.

    CAS  Google Scholar 

  40. Smith EP, Boyd J, Frank GR, Takahashi H, Cohen RM, Specker B, et al. Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N Engl J Med. 1994;331:1056–61. doi:10.1056/NEJM199410203311604.

    CAS  PubMed  CrossRef  Google Scholar 

  41. Sun H, Zang W, Zhou B, Xu L, Wu S. DHEA suppresses longitudinal bone growth by acting directly at growth plate through estrogen receptors. Endocrinology. 2011;152:1423–33. doi:10.1210/en.2010-0920.

    CAS  PubMed  CrossRef  Google Scholar 

  42. Chagin AS, Karimian E, Sundstrom K, Eriksson E, Savendahl L. Catch-up growth after dexamethasone withdrawal occurs in cultured postnatal rat metatarsal bones. J Endocrinol. 2009;204:21–9. doi:10.1677/JOE-09-0307.

    PubMed  CrossRef  CAS  Google Scholar 

  43. Morishima A, Grumbach MM, Simpson ER, Fisher C, Qin K. Aromatase deficiency in male and female siblings caused by a novel mutation and the physiological role of estrogens. J Clin Endocrinol Metab. 2013;80:3689–98. doi:10.1210/jcem.80.12.8530621.

    Google Scholar 

  44. Schicht M, Ernst J, Nielitz A, Fester L, Tsokos M, Guddat SS, et al. Articular cartilage chondrocytes express aromatase and use enzymes involved in estrogen metabolism. Arthritis Res Ther. 2014;16:1–9. doi:10.1186/ar4539.

  45. Chagin AS. Locally produced estrogen promotes fetal rat metatarsal bone growth; an effect mediated through increased chondrocyte proliferation and decreased apoptosis. J Endocrinol. 2006;188:193–203. doi:10.1677/joe.1.06364.

    CAS  PubMed  CrossRef  Google Scholar 

  46. Ebeling PR, Atley LM, Guthrie JR, Burger HG, Dennerstein L, Hopper JL, et al. Bone turnover markers and bone density across the menopausal transition. J Clin Endocrinol Metab. 1996;81:3366–71. doi:10.1210/jcem.81.9.8784098.

    CAS  PubMed  Google Scholar 

  47. Finkelstein JS, Brockwell SE, Mehta V, Greendale GA, Sowers MR, Ettinger B, et al. Bone mineral density changes during the menopause transition in a multiethnic cohort of women. J Clin Endocrinol Metab. 2008;93:861–8. doi:10.1210/jc.2007-1876.

    CAS  PubMed  CrossRef  Google Scholar 

  48. Laurent M, Gielen E, Claessens F, Boonen S, Vanderschueren D. Osteoporosis in older men: recent advances in pathophysiology and treatment. Best Pract Res Clin Endocrinol Metab (Elsevier Ltd). 2013;27:527–39. doi:10.1016/j.beem.2013.04.010.

    CAS  CrossRef  Google Scholar 

  49. Melton LJ, Chrischilles EA, Cooper C, Lane AW, Riggs BL. Perspective. How many women have osteoporosis? J Bone Miner Res (John Wiley and Sons and The American Society for Bone and Mineral Research (ASBMR)). 1992;7:1005–10. doi:10.1002/jbmr.5650070902.

    CrossRef  Google Scholar 

  50. Laurent M, Sinnesael M, Vanderschueren D, Antonio L, Classens F, Dubois V, et al. Androgens and estrogens in skeletal sexual dimorphism. Asian J Androl. 2014;16:213–10. doi:10.4103/1008-682X.122356.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  51. Finkelstein JS, Klibanski A, Neer RM, Greenspan SL, Rosenthal DI, Crowley WF. Osteoporosis in men with idiopathic hypogonadotropic hypogonadism. Ann Intern Med (American College of Physicians). 1987;106:354–61. doi:10.7326/0003-4819-106-3.

    CAS  CrossRef  Google Scholar 

  52. Perrien DS, Akel NS, Edwards PK, Carver AA, Bendre MS, Swain FL, et al. Inhibin A is an endocrine stimulator of bone mass and strength. Endocrinology. 2007;148:1654–65. doi:10.1210/en.2006-0848.

    CAS  PubMed  CrossRef  Google Scholar 

  53. Meunier H, Rivier C, Evans RM, Vale W. Gonadal and extragonadal expression of inhibin alpha, beta A, and beta B subunits in various tissues predicts diverse functions. Proc Natl Acad Sci U S A (National Academy of Sciences). 1988;85:247–51.

    CAS  CrossRef  Google Scholar 

  54. Yu J, Shao L-E, Lemas V, Yu AL, Vaughan J, Rivier J, et al. Importance of FSH-releasing protein and inhibin in erythrodifferentiation. Published online: 31 December 1987; doi:101038/330765a0. Nature. Nature Publishing Group; 1987;330:765–7. doi:10.1038/330765a0.

  55. Perrin JS, Herve PY, Leonard G, Perron M, Pike GB, Pitiot A, et al. Growth of white matter in the adolescent brain: role of testosterone and androgen receptor. J Neurosci. 2008;28:9519–24. doi:10.1523/JNEUROSCI.1212-08.2008.

    CAS  PubMed  CrossRef  Google Scholar 

  56. Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos A, et al. Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci. 1999;2:861–3. doi:10.1038/13158.

    CAS  PubMed  CrossRef  Google Scholar 

  57. Paus T. Growth of white matter in the adolescent brain: myelin or axon? Brain Cogn (Elsevier Inc). 2010;72:26–35. doi:10.1016/j.bandc.2009.06.002.

    CrossRef  Google Scholar 

  58. Ladouceur CD, Peper JS, Crone EA, Dahl RE. White matter development in adolescence: the influence of puberty and implications for affective disorders. Dev Cogn Neurosci. 2012;2:36–54. doi:10.1016/j.dcn.2011.06.002.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  59. Bramen JE, Hranilovich JA, Dahl RE, Forbes EE, Chen J, Toga AW, et al. Puberty influences medial temporal lobe and cortical gray matter maturation differently in boys than girls matched for sexual maturity. Cereb Cortex. 2011;21:636–46. doi:10.1093/cercor/bhq137.

    PubMed  CrossRef  Google Scholar 

  60. Laroche J, Gasbarro L, Herman JP, Blaustein JD. Reduced behavioral response to gonadal hormones in mice shipped during the peripubertal/adolescent period. Endocrinology. 2009;150:2351–8. doi:10.1210/en.2008-1595.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  61. Kercmar J, Tobet SA, Majdic G. Social isolation during puberty affects female sexual behavior in mice. Front Behav Neurosci (Frontiers). 2014;8:337. doi:10.3389/fnbeh.2014.00337.

    Google Scholar 

  62. Bruni JF, Van Vugt D, Marshall S, Meites J. Effects of naloxone, morphine and methionine enkephalin on serum prolactin, luteinizing hormone, follicle stimulating hormone, thyroid stimulating hormone and growth hormone. Life Sci. 1977;21:461–6.

    CAS  PubMed  CrossRef  Google Scholar 

  63. Miller NLG, Wevrick R, Mellon PL. Necdin, a Prader-Willi syndrome candidate gene, regulates gonadotropin-releasing hormone neurons during development. Hum Mol Genet. 2008;18:248–60. doi:10.1093/hmg/ddn344.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  64. Luborsky JL, Meyer P, Sowers MF, Gold EB, Santoro N. Premature menopause in a multi-ethnic population study of the menopause transition. Hum Reprod. 2003;18:199–206. doi:10.1093/humrep/deg005.

    CAS  PubMed  CrossRef  Google Scholar 

  65. Allen EG, Sullivan AK, Marcus M, Small C, Dominguez C, Epstein MP, et al. Examination of reproductive aging milestones among women who carry the FMR1 premutation. Hum Reprod. 2007;22:2142–52. doi:10.1093/humrep/dem148.

    CAS  PubMed  CrossRef  Google Scholar 

  66. Di Pasquale E, Rossetti R, Marozzi A, Bodega B, Borgato S, Cavallo L, et al. Identification of new variants of human BMP15 gene in a large cohort of women with premature ovarian failure. J Clin Endocrinol Metab. 2006;91:1976–9. doi:10.1210/jc.2005-2650.

    PubMed  CrossRef  CAS  Google Scholar 

  67. Prakash GJ, Kanth VVR, Shelling AN, Rozati R, Sujatha M. Absence of 566C>T mutation in exon 7 of the FSHR gene in Indian women with premature ovarian failure. Int J Gynaecol Obstet (Elsevier). 2009;105:265–6. doi:10.1016/j.ijgo.2009.01.023.

    CrossRef  Google Scholar 

  68. Latronico AC, Anasti J, Arnhold IJ, Rapaport R, Mendonca BB, Bloise W, et al. Brief report: testicular and ovarian resistance to luteinizing hormone caused by inactivating mutations of the luteinizing hormone-receptor gene. N Engl J Med. 1996;334:507–12. doi:10.1056/NEJM199602223340805.

    CAS  PubMed  CrossRef  Google Scholar 

  69. Mansouri MR, Schuster J, Badhai J, Stattin EL, Losel R, Wehling M, et al. Alterations in the expression, structure and function of progesterone receptor membrane component-1 (PGRMC1) in premature ovarian failure. Hum Mol Genet. 2008;17:3776–83. doi:10.1093/hmg/ddn274.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  70. Sinha SK, Bhangoo A, Ten S, Gromoll J. Leydig cell hypoplasia due to inactivating luteinizing hormone/chorionic gonadotropin receptor gene mutation presenting as a 46, XY DSD. Adv Exp Med Biol (New York NY: Springer New York). 2011;707:147–8. doi:10.1007/978-1-4419-8002-1_32.

    CAS  CrossRef  Google Scholar 

  71. Tordjman KM, Yaron M, Berkovitz A, Botchan A, Sultan C, Lumbroso S. Fertility after high-dose testosterone and intracytoplasmic sperm injection in a patient with androgen insensitivity syndrome with a previously unreported androgen receptor mutation. Andrologia. 2014;46:703–6. doi:10.1111/and.12126.

    CAS  PubMed  CrossRef  Google Scholar 

  72. Izumi Y, Suzuki E, Kanzaki S, Yatsuga S, Kinjo S, Igarashi M, et al. Genome-wide copy number analysis and systematic mutation screening in 58 patients with hypogonadotropic hypogonadism. Fertil Steril. 2014;102:1130–6.e3. doi:10.1016/j.fertnstert.2014.06.017.

    CAS  PubMed  CrossRef  Google Scholar 

  73. Ward E, DeSantis C, Robbins A, Kohler B, Jemal A. Childhood and adolescent cancer statistics. CA Cancer J Clin. 2014;64:83–103. doi:10.3322/caac.21219.

    PubMed  CrossRef  Google Scholar 

  74. Whitehead E, Shalet SM, Blackledge G, Todd I, Crowther D, Beardwell CG. The effects of Hodgkin’s disease and combination chemotherapy on gonadal function in the adult male. Cancer. 1982;49:418–22.

    CAS  PubMed  CrossRef  Google Scholar 

  75. Thomas-Teinturier C, El Fayech C, Oberlin O, Pacquement H, Haddy N, Labbé M, et al. Age at menopause and its influencing factors in a cohort of survivors of childhood cancer: earlier but rarely premature. Hum Reprod (Oxford University Press). 2013;28:488–95. doi:10.1093/humrep/des391.

    CrossRef  Google Scholar 

  76. Howell SJ, Shalet SM. Testicular function following chemotherapy. Hum Reprod Update. 2001;7:363–9.

    CAS  PubMed  CrossRef  Google Scholar 

  77. Torino F, Barnabei A, De Vecchis L, Sini V, Schittulli F, Marchetti P, et al. Chemotherapy-induced ovarian toxicity in patients affected by endocrine-responsive early breast cancer. Crit Rev Oncol Hematol (Elsevier Ireland Ltd). 2014;89:27–42. doi:10.1016/j.critrevonc.2013.07.007.

    CrossRef  Google Scholar 

  78. Park M-C, Park YB, Jung SY, Chung IH, Choi KH, Lee S-K. Risk of ovarian failure and pregnancy outcome in patients with lupus nephritis treated with intravenous cyclophosphamide pulse therapy. Lupus. 2004;13:569–74. doi:10.1191/0961203304lu1063oa.

    CAS  PubMed  CrossRef  Google Scholar 

  79. Birch Petersen K, Hvidman HW, Forman JL, Pinborg A, Larsen EC, Macklon KT, et al. Ovarian reserve assessment in users of oral contraception seeking fertility advice on their reproductive lifespan. Hum Reprod. 2015;30:2364–75. doi:10.1093/humrep/dev197.

    CAS  PubMed  CrossRef  Google Scholar 

  80. Lambalk CB. Anti-Müllerian hormone, the holy grail for fertility counselling in the general population? Hum Reprod. 2015;30:2257–8. doi:10.1093/humrep/dev199.

    PubMed  CrossRef  Google Scholar 

  81. Aksglaede L, Sorensen K, Boas M, Mouritsen A, Hagen CP, Jensen RB, et al. Changes in Anti-Müllerian Hormone (AMH) throughout the life span: a population-based study of 1027 healthy males from birth (cord blood) to the age of 69 years. J Clin Endocrinol Metab. 2010;95:5357–64. doi:10.1210/jc.2010-1207.

    CAS  PubMed  CrossRef  Google Scholar 

  82. Gravholt CH, Naeraa RW, Andersson A-M, Christiansen JS, Skakkebaek NE. Inhibin A and B in adolescents and young adults with Turner’s syndrome and no sign of spontaneous puberty. Hum Reprod. 2002;17:2049–53. doi:10.1093/humrep/17.8.2049.

    CAS  PubMed  CrossRef  Google Scholar 

  83. Davenport ML. Moving toward an understanding of hormone replacement therapy in adolescent girls. Ann N Y Acad Sci. 2008;1135:126–37. doi:10.1196/annals.1429.031.

    CAS  PubMed  CrossRef  Google Scholar 

  84. Giustina A, Scalvini T, Tassi C, Desenzani P, Poiesi C, Wehrenberg WB, et al. Maturation of the regulation of growth hormone secretion in young males with hypogonadotropic hypogonadism pharmacologically exposed to progressive increments in serum testosterone. J Clin Endocrinol Metab. 1997;82:1210–9. doi:10.1210/jcem.82.4.3871.

    CAS  PubMed  Google Scholar 

  85. Gonzalez L, Witchel SF. The patient with Turner syndrome: puberty and medical management concerns. Fertil Steril. 2012;98:780–6. doi:10.1016/j.fertnstert.2012.07.1104.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  86. Taboada M, Santen R, Lima J, Hossain J, Singh R, Klein KO, et al. Pharmacokinetics and pharmacodynamics of oral and transdermal 17β estradiol in girls with turner syndrome. J Clin Endocrinol Metab. 2011;96:3502–10. doi:10.1210/jc.2011-1449.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  87. Fatemi HM, Bourgain C, Donoso P, Blockeel C, Papanikolaou EG, Popovic-Todorovic B, et al. Effect of oral administration of dydrogestrone versus vaginal administration of natural micronized progesterone on the secretory transformation of endometrium and luteal endocrine profile in patients with premature ovarian failure: a proof of concept. Hum Reprod. 2007;22:1260–3. doi:10.1093/humrep/del520.

    CAS  PubMed  CrossRef  Google Scholar 

  88. O’Sullivan AJ, Crampton LJ, Freund J, Ho KK. The route of estrogen replacement therapy confers divergent effects on substrate oxidation and body composition in postmenopausal women. J Clin Invest (American Society for Clinical Investigation). 1998;102:1035–40. doi:10.1172/JCI2773.

    CrossRef  Google Scholar 

  89. Vongpatanasin W, Tuncel M, Wang Z, Arbique D, Mehrad B, Jialal I. Differential effects of oral versus transdermal estrogen replacement therapy on C-reactive protein in postmenopausal women. J Am Coll Cardiol. 2003;41:1358–63. doi:10.1016/S0735-1097(03)00156-6.

    CAS  PubMed  CrossRef  Google Scholar 

  90. Vehkavaara S, Hakala-Ala-Pietilä T, Virkamäki A, Bergholm R, Ehnholm C, Hovatta O, et al. Differential effects of oral and transdermal estrogen replacement therapy on endothelial function in postmenopausal women. Circulation. 2000;102:2687–93.

    CAS  PubMed  CrossRef  Google Scholar 

  91. Layton JB, Li D, Meier CR, Sharpless J, Stürmer T, Jick SS, et al. Testosterone lab testing and initiation in the United Kingdom and the United States, 2000–2011. J Clin Endocrinol Metab. 2013:jc.2013–3570–8. doi:10.1210/jc.2013-3570.

  92. Gonzalo ITG, Swerdloff RS, Nelson AL, Clevenger B, Garcia R, Berman N, et al. Levonorgestrel implants (Norplant II) for male contraception clinical trials: combination with transdermal and injectable testosterone. J Clin Endocrinol Metab. 2002;87:3562–72. doi:10.1210/jcem.87.8.8710.

    CAS  PubMed  CrossRef  Google Scholar 

  93. The Practice Committee of the American Society for Reproductive Medicine. Fertility preservation in patients undergoing gonadotoxic therapy or gonadectomy: a committee opinion. Fertil Steril (American Society for Reproductive Medicine). 2013;100:1214–23. doi:10.1016/j.fertnstert.2013.08.012.

    Google Scholar 

  94. Woodruff TK. The emergence of a new interdiscipline: oncofertility. In: Woodruff TK, Snyder KA, editors. Oncofertility fertility preservation for cancer survivors. Springer US; 2007. p. 3–11. doi:10.1007/978-0-387-72293-1.

  95. Duncan FE, Pavone ME, Gunn AH, Badawy S, Gracia C, Ginsberg JP, et al. Pediatric and teen ovarian tissue removed for cryopreservation contains follicles irrespective of age, disease diagnosis, treatment history, and specimen processing methods. J Adolesc Young Adult Oncol. 2015:150908124647009–10. doi:10.1089/jayao.2015.0032.

  96. Laronda MM, Duncan FE, Hornick JE, Xu M, Pahnke JE, Whelan KA, et al. Alginate encapsulation supports the growth and differentiation of human primordial follicles within ovarian cortical tissue. J Assist Reprod Genet (Springer US). 2014;31:1013–28. doi:10.1007/s10815-014-0252-x.

    CrossRef  Google Scholar 

  97. Donnez J, Dolmans M-M. Fertility preservation in women. Nat Rev Endocrinol (Nature Publishing Group). 2013;9:735–49. doi:10.1038/nrendo.2013.205.

    CAS  CrossRef  Google Scholar 

  98. Silber S, Kagawa N, Kuwayama M, Gosden R. Duration of fertility after fresh and frozen ovary transplantation. Fertil Steril (Elsevier Ltd). 2010;94:2191–6. doi:10.1016/j.fertnstert.2009.12.073.

    CrossRef  Google Scholar 

  99. Donnez JJ, Dolmans M-M, Demylle DD, Jadoul PP, Pirard CC, Squifflet JJ, et al. Livebirth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet. 2004;364:1405–10. doi:10.1016/S0140-6736(04)17222-X.

    CAS  PubMed  CrossRef  Google Scholar 

  100. Donnez J, Jadoul P, Pirard C, Hutchings G, Demylle D, Squifflet J, et al. Live birth after transplantation of frozen-thawed ovarian tissue oophorectomy for benign disease. Fertil Steril (Elsevier Inc). 2012;98:720–5. doi:10.1016/j.fertnstert.2012.05.017.

    CrossRef  Google Scholar 

  101. Oktay K, Economos K, Kan M, Rucinski J, Veeck L, Rosenwaks Z. Endocrine function and oocyte retrieval after autologous transplantation of ovarian cortical strips to the forearm. JAMA (American Medical Association). 2001;286:1490–3.

    CAS  CrossRef  Google Scholar 

  102. Oktay KK, Buyuk EE, Rosenwaks ZZ, Rucinski JJ. A technique for transplantation of ovarian cortical strips to the forearm. Fertil Steril. 2003;80:193–8. doi:10.1016/S0015-0282(03)00568-5.

    PubMed  CrossRef  Google Scholar 

  103. Donnez J, Dolmans M-M. Ovarian cortex transplantation: 60 reported live births brings the success and worldwide expansion of the technique towards routine clinical practice. J Assist Reprod Genet (Springer US). 2015;32:1167–70. doi:10.1007/s10815-015-0544-9.

    CrossRef  Google Scholar 

  104. Gavish Z, Peer G, Hadassa R, Yoram C, Meirow D. Follicle activation and “burn-out” contribute to post-transplantation follicle loss in ovarian tissue grafts: the effect of graft thickness. Hum Reprod. 2014;29:989–96. doi:10.1093/humrep/deu015.

    PubMed  CrossRef  Google Scholar 

  105. Laronda MM, Jakus AE, Whelan KA, Wertheim JA, Shah RN, Woodruff TK. Initiation of puberty in mice following decellularized ovary transplant. Biomaterials (Elsevier Ltd). 2015;50:20–9. doi:10.1016/j.biomaterials.2015.01.051.

    CAS  CrossRef  Google Scholar 

  106. Luyckx V, Durant JF, Camboni A, Gilliaux S, Amorim CA, Langendonckt A, et al. Is transplantation of cryopreserved ovarian tissue from patients with advanced-stage breast cancer safe? A pilot study. J Assist Reprod Genet. 2013. doi:10.1007/s10815-013-0065-3.

    Google Scholar 

  107. Bastings L, Beerendonk CCM, Westphal JR, Massuger LFAG, Kaal SEJ, van Leeuwen FE, et al. Autotransplantation of cryopreserved ovarian tissue in cancer survivors and the risk of reintroducing malignancy: a systematic review. Hum Reprod Update. 2013;19:483–506. doi:10.1093/humupd/dmt020.

    CAS  PubMed  CrossRef  Google Scholar 

  108. Sasaki K, Yokobayashi S, Nakamura T, Okamoto I, Yabuta Y, Kurimoto K, et al. Robust in vitro induction of human germ cell fate from pluripotent stem cells. Stem Cell (Elsevier Inc). 2015;17:178–94. doi:10.1016/j.stem.2015.06.014.

    CAS  Google Scholar 

  109. Lan C-W, Chen M-J, Jan P-S, Chen H-F, Ho H-N. Differentiation of human embryonic stem cells into functional ovarian granulosa-like cells. J Clin Endocrinol Metab. 2013;98:3713–23. doi:10.1210/jc.2012-4302.

    CAS  PubMed  CrossRef  Google Scholar 

  110. US Department of Health and Human Services Centers for Disease Control and Prevention. 2012 Assisted reproductive technology national summary report. 2014, p. 1–82.

    Google Scholar 

  111. Wyns C, Curaba M, Petit S, Vanabelle B, Laurent P, Wese JFX, et al. Management of fertility preservation in prepubertal patients: 5 years’ experience at the Catholic University of Louvain. Hum Reprod (Oxford University Press). 2011;26:737–47. doi:10.1093/humrep/deq387.

    CAS  CrossRef  Google Scholar 

  112. Ginsberg JP, Carlson CA, Lin K, Hobbie WL, Wigo E, Wu X, et al. An experimental protocol for fertility preservation in prepubertal boys recently diagnosed with cancer: a report of acceptability and safety. Hum Reprod (Oxford University Press). 2010;25:37–41. doi:10.1093/humrep/dep371.

    CAS  CrossRef  Google Scholar 

  113. Sadri-Ardekani H. Propagation of human spermatogonial stem cells in vitro. JAMA. 2009;302:2127–12. doi:10.1001/jama.2009.1689.

    CAS  PubMed  CrossRef  Google Scholar 

  114. Keros V, Hultenby K, Borgström B, Fridström M, Jahnukainen K, Hovatta O. Methods of cryopreservation of testicular tissue with viable spermatogonia in pre-pubertal boys undergoing gonadotoxic cancer treatment. Hum Reprod (Oxford University Press). 2007;22:1384–95. doi:10.1093/humrep/del508.

    CAS  CrossRef  Google Scholar 

  115. Goossens E, Van Saen D, Tournaye H. Spermatogonial stem cell preservation and transplantation: from research to clinic. Hum Reprod (Oxford University Press). 2013;28:897–907. doi:10.1093/humrep/det039.

    CAS  CrossRef  Google Scholar 

  116. Payne CJ. The next frontier: the promise of in vitro spermatogenesis coupled with intracytoplasmic sperm injection. Andrology-Open Access. 2012. doi:10.4172/2167-0420.1000191.

    Google Scholar 

  117. Nagano M, Patrizio P, Brinster RL. Long-term survival of human spermatogonial stem cells in mouse testes. Fertil Steril. 2002;78:1225–33.

    PubMed  CrossRef  Google Scholar 

  118. Honaramooz A, Li M-W, Penedo MCT, Meyers S, Dobrinski I. Accelerated maturation of primate testis by xenografting into mice. Biol Reprod (Society for the Study of Reproduction). 2004;70:1500–3. doi:10.1095/biolreprod.103.025536.

    CAS  CrossRef  Google Scholar 

  119. Honaramooz A, Snedaker A, Boiani M, Schöler H, Dobrinski I, Schlatt S. Sperm from neonatal mammalian testes grafted in mice. Nature. 2002;418:778–81. doi:10.1038/nature00918.

    CAS  PubMed  CrossRef  Google Scholar 

  120. Kim TH, Hargreaves HK, Brynes RK, Hawkins HK, Lui VK, Woodard J, et al. Pretreatment testicular biopsy in childhood acute lymphocytic leukaemia. Lancet. 1981;2:657–8.

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa K. Woodruff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Laronda, M.M., Woodruff, T.K. (2017). Opportunities for Enabling Puberty. In: Woodruff, T., Gosiengfiao, Y. (eds) Pediatric and Adolescent Oncofertility. Springer, Cham. https://doi.org/10.1007/978-3-319-32973-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32973-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32971-0

  • Online ISBN: 978-3-319-32973-4

  • eBook Packages: MedicineMedicine (R0)