Skip to main content

Fertility Issues in Transfusion-Dependent Thalassemia Patients: Pathophysiology, Assessment, and Management

  • 491 Accesses

Abstract

Better understanding of pathogenesis, diagnosis, prevention, and treatment of infertility problems in transfusion-dependent thalassemia (TDT) patients has taken priority in the recent years. Excess transfusional iron, if not effectively removed, imposes deleterious effects on the anterior pituitary and likely on the gonadal tissue as well, resulting in hypogonadotropic hypogonadism, amenorrhea, abnormal spermatogenesis, and a declining reproductive potential. Though spontaneous pregnancy can occur in some women with a low iron burden, many, in particular those 30–35 years and older, require ovulation induction and ART. Prepregnancy multidisciplinary counseling and close monitoring during gestation are required to avoid complications to both mother and fetus. In men, who often have a low sperm count and function, induction of spermatogenesis and micromanipulation along with IVF can be applied. Implementation of current methods for predicting reproductive status and for fertility preservation is needed for this patient population; these along with optimal iron chelation therapy could allow earlier intervention for fertility salvation.

Keywords

  • Infertility
  • Transfusion-dependent thalassemia
  • Pituitary iron
  • Iron overload
  • Thalassemia pregnancy

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-32973-4_14
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-32973-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 14.1
Fig. 14.2

References

  1. Casale M, et al. Endocrine function and bone disease during long-term chelation therapy with deferasirox in patients with beta-thalassemia major. Am J Hematol. 2014;89(12):1102–6.

    CAS  PubMed  CrossRef  Google Scholar 

  2. Pennell DJ, et al. Continued improvement in myocardial T2* over two years of deferasirox therapy in beta-thalassemia major patients with cardiac iron overload. Haematologica. 2011;96(1):48–54.

    CAS  PubMed  CrossRef  Google Scholar 

  3. Farmaki K, Tzoumari I, Pappa C. Oral chelators in transfusion-dependent thalassemia major patients may prevent or reverse iron overload complications. Blood Cells Mol Dis. 2011;47(1):33–40.

    CAS  PubMed  CrossRef  Google Scholar 

  4. Berdoukas V, et al. Iron chelation in thalassemia: time to reconsider our comfort zones. Expert Rev Hematol. 2011;4(1):17–26.

    PubMed  CrossRef  Google Scholar 

  5. De Sanctis V. Growth and puberty and its management in thalassaemia. Horm Res. 2002;58 Suppl 1:72–9.

    PubMed  Google Scholar 

  6. De Sanctis V, et al. Growth and endocrine disorders in thalassemia: the international network on endocrine complications in thalassemia (I-CET) position statement and guidelines. Indian J Endocrinol Metab. 2013;17(1):8–18.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  7. De Sanctis V, et al. Late-onset male hypogonadism and fertility potential in thalassemia major patients: two emerging issues. Mediterr J Hematol Infect Dis. 2015;7(1):e2015047.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  8. Singer ST, et al. Reproductive capacity in iron overloaded women with thalassemia major. Blood. 2011;118(10):2878–81.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  9. Gabutti V, Piga A. Results of long-term iron-chelating therapy. Acta Haematol. 1996;95(1):26–36.

    CAS  PubMed  CrossRef  Google Scholar 

  10. Borgna-Pignatti C, et al. Survival and disease complications in thalassemia major. Ann N Y Acad Sci. 1998;850:227–31.

    CAS  PubMed  CrossRef  Google Scholar 

  11. Chatterjee R, et al. Prospective study of the hypothalamic-pituitary axis in thalassaemic patients who developed secondary amenorrhoea. Clin Endocrinol (Oxf). 1993;39(3):287–96.

    CAS  CrossRef  Google Scholar 

  12. Allegra A, et al. Hypogonadism in beta-thalassemic adolescents: a characteristic pituitary-gonadal impairment. The ineffectiveness of long-term iron chelation therapy. Gynecol Endocrinol. 1990;4(3):181–91.

    CAS  PubMed  CrossRef  Google Scholar 

  13. Bronspiegel-Weintrob N, et al. Effect of age at the start of iron chelation therapy on gonadal function in beta-thalassemia major. N Engl J Med. 1990;323(11):713–9.

    CAS  PubMed  CrossRef  Google Scholar 

  14. Skordis N, et al. The impact of iron overload and genotype on gonadal function in women with thalassaemia major. Pediatr Endocrinol Rev. 2004;2 Suppl 2:292–5.

    PubMed  Google Scholar 

  15. Borgna-Pignatti C, et al. Survival and complications in patients with thalassemia major treated with transfusion and deferoxamine. Haematologica. 2004;89(10):1187–93.

    PubMed  Google Scholar 

  16. Al-Rimawi HS, et al. Hypothalamic-pituitary-gonadal function in adolescent females with beta-thalassemia major. Int J Gynaecol Obstet. 2005;90(1):44–7.

    CAS  PubMed  CrossRef  Google Scholar 

  17. Papadimas J, et al. beta-thalassemia and gonadal axis: a cross-sectional, clinical study in a Greek population. Hormones (Athens). 2002;1(3):179–87.

    CrossRef  Google Scholar 

  18. Esposito BP, et al. Labile plasma iron in iron overload: redox activity and susceptibility to chelation. Blood. 2003;102(7):2670–7.

    CAS  PubMed  CrossRef  Google Scholar 

  19. Hershko C, Link G, Cabantchik I. Pathophysiology of iron overload. Ann N Y Acad Sci. 1998;850:191–201.

    CAS  PubMed  CrossRef  Google Scholar 

  20. Livrea MA, et al. Oxidative stress and antioxidant status in beta-thalassemia major: iron overload and depletion of lipid-soluble antioxidants. Blood. 1996;88(9):3608–14.

    CAS  PubMed  Google Scholar 

  21. Shazia Q, et al. Correlation of oxidative stress with serum trace element levels and antioxidant enzyme status in Beta thalassemia major patients: a review of the literature. Anemia. 2012;2012:270923.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  22. Waseem F, Khemomal KA, Sajid R. Antioxidant status in beta thalassemia major: a single-center study. Indian J Pathol Microbiol. 2011;54(4):761–3.

    PubMed  Google Scholar 

  23. Claster S, et al. Nutritional deficiencies in iron overloaded patients with hemoglobinopathies. Am J Hematol. 2009;84(6):344–8.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  24. Vogiatzi MG, et al. Bone disease in thalassemia: a frequent and still unresolved problem. J Bone Miner Res. 2009;24(3):543–57.

    PubMed  CrossRef  Google Scholar 

  25. Chapman RW, et al. Effect of ascorbic acid deficiency on serum ferritin concentration in patients with beta-thalassaemia major and iron overload. J Clin Pathol. 1982;35(5):487–91.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  26. Walter PB, et al. Oxidative stress and inflammation in iron-overloaded patients with beta-thalassaemia or sickle cell disease. Br J Haematol. 2006;135(2):254–63.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  27. Piga A, et al. High nontransferrin bound iron levels and heart disease in thalassemia major. Am J Hematol. 2009;84(1):29–33.

    CAS  PubMed  CrossRef  Google Scholar 

  28. Desai N, et al. Physiologic and pathologic levels of reactive oxygen species in neat semen of infertile men. Fertil Steril. 2009;92(5):1626–31.

    PubMed  CrossRef  Google Scholar 

  29. Agarwal A, Said TM. Oxidative stress, DNA damage and apoptosis in male infertility: a clinical approach. BJU Int. 2005;95(4):503–7.

    CAS  PubMed  CrossRef  Google Scholar 

  30. Makker K, Agarwal A, Sharma R. Oxidative stress & male infertility. Indian J Med Res. 2009;129(4):357–67.

    CAS  PubMed  Google Scholar 

  31. Appasamy M, et al. Evaluation of the relationship between follicular fluid oxidative stress, ovarian hormones, and response to gonadotropin stimulation. Fertil Steril. 2008;89(4):912–21.

    CAS  PubMed  CrossRef  Google Scholar 

  32. Tarin JJ. Potential effects of age-associated oxidative stress on mammalian oocytes/embryos. Mol Hum Reprod. 1996;2(10):717–24.

    CAS  PubMed  CrossRef  Google Scholar 

  33. Tatone C, et al. Cellular and molecular aspects of ovarian follicle ageing. Hum Reprod Update. 2008;14(2):131–42.

    CAS  PubMed  CrossRef  Google Scholar 

  34. Agarwal A, Gupta S, Sharma RK. Role of oxidative stress in female reproduction. Reprod Biol Endocrinol. 2005;3:28.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  35. Agarwal A, et al. Effect of oxidative stress on male reproduction. World J Mens Health. 2014;32(1):1–17.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  36. Zini A, San Gabriel M, Baazeem A. Antioxidants and sperm DNA damage: a clinical perspective. J Assist Reprod Genet. 2009;26(8):427–32.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  37. Raijmakers MT, et al. Glutathione and glutathione S-transferases A1-1 and P1-1 in seminal plasma may play a role in protecting against oxidative damage to spermatozoa. Fertil Steril. 2003;79(1):169–72.

    PubMed  CrossRef  Google Scholar 

  38. Atig F, et al. Impact of seminal trace element and glutathione levels on semen quality of Tunisian infertile men. BMC Urol. 2012;12:6.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  39. Schulte RT, et al. Sperm DNA damage in male infertility: etiologies, assays, and outcomes. J Assist Reprod Genet. 2010;27(1):3–12.

    PubMed  CrossRef  Google Scholar 

  40. Ebisch IM, et al. The importance of folate, zinc and antioxidants in the pathogenesis and prevention of subfertility. Hum Reprod Update. 2007;13(2):163–74.

    CAS  PubMed  CrossRef  Google Scholar 

  41. Kobori Y, et al. Antioxidant cosupplementation therapy with vitamin C, vitamin E, and coenzyme Q10 in patients with oligoasthenozoospermia. Arch Ital Urol Androl. 2014;86(1):1–4.

    PubMed  CrossRef  CAS  Google Scholar 

  42. Agarwal A, Prabakaran SA. Mechanism, measurement, and prevention of oxidative stress in male reproductive physiology. Indian J Exp Biol. 2005;43(11):963–74.

    CAS  PubMed  Google Scholar 

  43. Marzec-Wroblewska U, et al. Zinc and iron concentration and SOD activity in human semen and seminal plasma. Biol Trace Elem Res. 2011;143(1):167–77.

    CAS  PubMed  CrossRef  Google Scholar 

  44. Reubinoff BE, et al. Increased levels of redox-active iron in follicular fluid: a possible cause of free radical-mediated infertility in beta-thalassemia major. Am J Obstet Gynecol. 1996;174(3):914–8.

    CAS  PubMed  CrossRef  Google Scholar 

  45. Birkenfeld A, et al. Endometrial glandular haemosiderosis in homozygous beta-thalassaemia. Eur J Obstet Gynecol Reprod Biol. 1989;31(2):173–8.

    CAS  PubMed  CrossRef  Google Scholar 

  46. Roussou P, et al. Beta-thalassemia major and female fertility: the role of iron and iron-induced oxidative stress. Anemia. 2013;2013:617204.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  47. Carpino A, et al. Antioxidant capacity in seminal plasma of transfusion-dependent beta-thalassemic patients. Exp Clin Endocrinol Diabetes. 2004;112(3):131–4.

    CAS  PubMed  CrossRef  Google Scholar 

  48. Perera D, et al. Sperm DNA damage in potentially fertile homozygous beta-thalassaemia patients with iron overload. Hum Reprod. 2002;17(7):1820–5.

    CAS  PubMed  CrossRef  Google Scholar 

  49. De Sanctis V, et al. Spermatozoal DNA damage in patients with B thalassaemia syndromes. Pediatr Endocrinol Rev. 2008;6 Suppl 1:185–9.

    PubMed  Google Scholar 

  50. De Sanctis V, et al. Spermatogenesis in young adult patients with beta-thalassaemia major long-term treated with desferrioxamine. Georgian Med News. 2008;156:74–7.

    Google Scholar 

  51. Singer ST, et al. Fertility in transfusion-dependent thalassemia men: effects of iron burden on the reproductive axis. Am J Hematol. 2015;90(9):E190–2.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  52. Skandhan KP, Mazumdar BN, Sumangala B. Study into the iron content of seminal plasma in normal and infertile subjects. Urologia. 2012;79(1):54–7.

    CAS  PubMed  CrossRef  Google Scholar 

  53. Meyer WR, et al. Secondary hypogonadism in hemochromatosis. Fertil Steril. 1990;54(4):740–2.

    CAS  PubMed  CrossRef  Google Scholar 

  54. Olivieri NF, Brittenham GM. Management of the thalassemias. Cold Spring Harb Perspect Med. 2013;3(6):1–14.

    Google Scholar 

  55. Telfer PT, et al. Hepatic iron concentration combined with long-term monitoring of serum ferritin to predict complications of iron overload in thalassaemia major. Br J Haematol. 2000;110(4):971–7.

    CAS  PubMed  CrossRef  Google Scholar 

  56. Farmaki K, et al. Normalisation of total body iron load with very intensive combined chelation reverses cardiac and endocrine complications of thalassaemia major. Br J Haematol. 2010;148(3):466–75.

    PubMed  CrossRef  Google Scholar 

  57. Christoforidis A, et al. MRI for the determination of pituitary iron overload in children and young adults with beta-thalassaemia major. Eur J Radiol. 2006;62(1):138–42.

    PubMed  CrossRef  Google Scholar 

  58. Christoforidis A, et al. Correlative study of iron accumulation in liver, myocardium, and pituitary assessed with MRI in young thalassemic patients. J Pediatr Hematol Oncol. 2006;28(5):311–5.

    CAS  PubMed  CrossRef  Google Scholar 

  59. Argyropoulou MI, Kiortsis DN, Efremidis SC. MRI of the liver and the pituitary gland in patients with beta-thalassemia major: does hepatic siderosis predict pituitary iron deposition? Eur Radiol. 2003;13(1):12–6.

    PubMed  Google Scholar 

  60. Lam WW, et al. One-stop measurement of iron deposition in the anterior pituitary, liver, and heart in thalassemia patients. J Magn Reson Imaging. 2008;28(1):29–33.

    PubMed  CrossRef  Google Scholar 

  61. Noetzli LJ, et al. Pituitary iron and volume predict hypogonadism in transfusional iron overload. Am J Hematol. 2012;87(2):167–71.

    CAS  PubMed  CrossRef  Google Scholar 

  62. Safarinejad MR. Evaluation of semen quality, endocrine profile and hypothalamus-pituitary-testis axis in male patients with homozygous beta-thalassemia major. J Urol. 2008;179(6):2327–32.

    CAS  PubMed  CrossRef  Google Scholar 

  63. Chatterjee R, Katz M. Reversible hypogonadotropic hypogonadism in sexually infantile male thalassaemic patients with transfusional iron overload. Clin Endocrinol (Oxf). 2000;53(1):33–42.

    CAS  CrossRef  Google Scholar 

  64. Berkovitch M, et al. Iron deposition in the anterior pituitary in homozygous beta-thalassemia: MRI evaluation and correlation with gonadal function. J Pediatr Endocrinol Metab. 2000;13(2):179–84.

    CAS  PubMed  CrossRef  Google Scholar 

  65. Borgna-Pignatti C, et al. Growth and sexual maturation in thalassemia major. J Pediatr. 1985;106(1):150–5.

    CAS  PubMed  CrossRef  Google Scholar 

  66. De Sanctis V, et al. Hypothalamic-pituitary-gonadal axis in thalassemic patients with secondary amenorrhea. Obstet Gynecol. 1988;72(4):643–7.

    PubMed  Google Scholar 

  67. Skordis N, et al. Update on fertility in thalassaemia major. Pediatr Endocrinol Rev. 2004;2 Suppl 2:296–302.

    PubMed  Google Scholar 

  68. Tuck SM. Fertility and pregnancy in thalassemia major. Ann N Y Acad Sci. 2005;1054:300–7.

    PubMed  CrossRef  Google Scholar 

  69. Skordis N, et al. Fertility in female patients with thalassemia. J Pediatr Endocrinol Metab. 1998;11 Suppl 3:935–43.

    PubMed  Google Scholar 

  70. Cohen AR et al. Thalassemia. Am Soc Hematol Educ Book. 2004;2004:14–34.

    Google Scholar 

  71. Mancuso A, et al. Pregnancy in patients with beta-thalassaemia major: maternal and foetal outcome. Acta Haematol. 2008;119(1):15–7.

    PubMed  CrossRef  Google Scholar 

  72. Reubinoff BE, et al. Defective oocytes as a possible cause of infertility in a beta-thalassaemia major patient. Hum Reprod. 1994;9(6):1143–5.

    CAS  PubMed  Google Scholar 

  73. Bajoria R, Chatterjee R. Current perspectives of fertility and pregnancy in thalassemia. Hemoglobin. 2009;33 Suppl 1:S131–5.

    CAS  PubMed  CrossRef  Google Scholar 

  74. De Sanctis V, et al. Gonadal function in patients with beta thalassaemia major. J Clin Pathol. 1988;41(2):133–7.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  75. Scheffer GJ, et al. Antral follicle counts by transvaginal ultrasonography are related to age in women with proven natural fertility. Fertil Steril. 1999;72(5):845–51.

    CAS  PubMed  CrossRef  Google Scholar 

  76. Kwee J, et al. Evaluation of anti-Mullerian hormone as a test for the prediction of ovarian reserve. Fertil Steril. 2008;90(3):737–43.

    CAS  PubMed  CrossRef  Google Scholar 

  77. Knauff EA, et al. Anti-Mullerian hormone, inhibin B, and antral follicle count in young women with ovarian failure. J Clin Endocrinol Metab. 2009;94(3):786–92.

    CAS  PubMed  CrossRef  Google Scholar 

  78. Gracia CR, et al. Ovarian tissue cryopreservation for fertility preservation in cancer patients: successful establishment and feasibility of a multidisciplinary collaboration. J Assist Reprod Genet. 2012;29(6):495–502.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  79. Senapati S, et al. Fertility preservation in patients with haematological disorders: a retrospective cohort study. Reprod Biomed Online. 2014;28(1):92–8.

    PubMed  CrossRef  Google Scholar 

  80. Babayev SN, et al. Evaluation of ovarian and testicular tissue cryopreservation in children undergoing gonadotoxic therapies. J Assist Reprod Genet. 2013;30(1):3–9.

    PubMed  CrossRef  Google Scholar 

  81. Revel A, et al. Micro-organ ovarian transplantation enables pregnancy: a case report. Hum Reprod. 2011;26(5):1097–103.

    PubMed  CrossRef  Google Scholar 

  82. Karagiorga-Lagana M. Fertility in thalassemia: the Greek experience. J Pediatr Endocrinol Metab. 1998;11 Suppl 3:945–51.

    PubMed  Google Scholar 

  83. Ansari S, Azarkeivan A, Tabaroki A. Pregnancy in patients treated for beta thalassemia major in two centers (Ali Asghar Children’s Hospital and Thalassemia Clinic): outcome for mothers and newborn infants. Pediatr Hematol Oncol. 2006;23(1):33–7.

    PubMed  CrossRef  Google Scholar 

  84. Origa R, et al. Pregnancy and {beta}-thalassemia: an Italian multicenter experience. Haematologica. 2009;94:1777–8.

    CrossRef  Google Scholar 

  85. Farmaki K, et al. Rapid iron loading in a pregnant woman with transfusion-dependent thalassemia after brief cessation of iron chelation therapy. Eur J Haematol. 2008;81(2):157–9.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  86. Skordis N, Porter J, Kalakoutis G. Fertility and pregnancy in Guidelines for the management of Transfusion Dependent Thalassaemia (TDT). TIF, 3rd edition. 2014;9:158–69.

    Google Scholar 

  87. Messina G, et al. Pregnant women affected by thalassemia major: a controlled study of traits and personality. J Res Med Sci. 2010;15(2):100–6.

    PubMed  PubMed Central  Google Scholar 

  88. Thompson AA, et al. Pregnancy outcomes in women with thalassemia in North America and the United Kingdom. Am J Hematol. 2013;88(9):771–3.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  89. Perniola R, et al. High-risk pregnancy in beta-thalassemia major women. Report of three cases. Gynecol Obstet Invest. 2000;49(2):137–9.

    CAS  PubMed  CrossRef  Google Scholar 

  90. Butwick A, Findley I, Wonke B. Management of pregnancy in a patient with beta thalassaemia major. Int J Obstet Anesth. 2005;14(4):351–4.

    CAS  PubMed  CrossRef  Google Scholar 

  91. Singer ST, Vichinsky EP. Deferoxamine treatment during pregnancy: is it harmful? Am J Hematol. 1999;60(1):24–6.

    CAS  PubMed  CrossRef  Google Scholar 

  92. Vaskaridou E, et al. Deferoxamine treatment during early pregnancy: absence of teratogenicity in two cases. Haematologica. 1993;78(3):183–4.

    CAS  PubMed  Google Scholar 

  93. Vini D, Servos P, Drosou M. Normal pregnancy in a patient with beta-thalassaemia major receiving iron chelation therapy with deferasirox (Exjade(R)). Eur J Haematol. 2011;86(3):274–5.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  94. Merchant R, et al. A successful twin pregnancy in a patient with HbE-β-thalassemia in western India. J Postgrad Med. 2015;61(3):203.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  95. Aessopos A, et al. Pregnancy in patients with well-treated beta-thalassemia: outcome for mothers and newborn infants. Am J Obstet Gynecol. 1999;180(2 Pt 1):360–5.

    CAS  PubMed  CrossRef  Google Scholar 

  96. Al-Riyami N, Al-Khaduri M, Daar S. Pregnancy outcomes in women with homozygous beta thalassaemia: a single-centre experience from Oman. Sultan Qaboos Univ Med J. 2014;14(3):e337–41.

    PubMed  PubMed Central  Google Scholar 

  97. Pafumi C, et al. The reproduction in women affected by cooley disease. Hematol Rep. 2011;3(1):e4.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  98. Natali A, Turek PJ. An assessment of new sperm tests for male infertility. Urology. 2011;77(5):1027–34.

    PubMed  CrossRef  Google Scholar 

  99. Bann CM, et al. Cancer survivors’ use of fertility preservation. J Womens Health (Larchmt). 2015;24:777–83.

    CrossRef  Google Scholar 

  100. Jensen CE, et al. Incidence of endocrine complications and clinical disease severity related to genotype analysis and iron overload in patients with beta-thalassaemia. Eur J Haematol. 1997;59(2):76–81.

    CAS  PubMed  CrossRef  Google Scholar 

  101. Grunewald S, et al. Age-dependent inhibin B concentration in relation to FSH and semen sample qualities: a study in 2448 men. Reproduction. 2013;145(3):237–44.

    CAS  PubMed  CrossRef  Google Scholar 

  102. Kumanov P, et al. Inhibin B is a better marker of spermatogenesis than other hormones in the evaluation of male factor infertility. Fertil Steril. 2006;86(2):332–8.

    CAS  PubMed  CrossRef  Google Scholar 

  103. Bungum M, et al. Sperm DNA integrity assessment in prediction of assisted reproduction technology outcome. Hum Reprod. 2007;22(1):174–9.

    CAS  PubMed  CrossRef  Google Scholar 

  104. Micinski P, et al. Total reactive antioxidant potential and DNA fragmentation index as fertility sperm parameters. Reprod Biol. 2011;11(2):135–44.

    PubMed  CrossRef  Google Scholar 

  105. Erenpreiss J, et al. Sperm chromatin structure and male fertility: biological and clinical aspects. Asian J Androl. 2006;8(1):11–29.

    CAS  PubMed  CrossRef  Google Scholar 

  106. Bajoria R, Chatterjee R. Hypogonadotropic hypogonadism and diminished gonadal reserve accounts for dysfunctional gametogenesis in thalassaemia patients with iron overload presenting with infertility. Hemoglobin. 2011;35(5–6):636–42.

    CAS  PubMed  CrossRef  Google Scholar 

  107. Warne DW, et al. A combined analysis of data to identify predictive factors for spermatogenesis in men with hypogonadotropic hypogonadism treated with recombinant human follicle-stimulating hormone and human chorionic gonadotropin. Fertil Steril. 2009;92(2):594–604.

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvia T. Singer MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Singer, S.T. (2017). Fertility Issues in Transfusion-Dependent Thalassemia Patients: Pathophysiology, Assessment, and Management. In: Woodruff, T., Gosiengfiao, Y. (eds) Pediatric and Adolescent Oncofertility. Springer, Cham. https://doi.org/10.1007/978-3-319-32973-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32973-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32971-0

  • Online ISBN: 978-3-319-32973-4

  • eBook Packages: MedicineMedicine (R0)