Skip to main content

Abstract

Disease afflicts crop productivity as well as nutritional attributes. Pathogens have the ability to mutate rapidly and thereby develop resistance to pesticides. Despite plant’s multilayer of innate defence against pathogens, often the latter are able to penetrate and establish themselves on plant host. The discovery of antimicrobial peptides (AMPs) has the promise of durable defence by quickly eliminating pathogens through membrane lysis. AMPs characteristically are made up of from fewer than 20 amino acids to about 100 amino acids, and yet are structurally diverse. AMPs in plants are classified into cyclotides, defensins, lipid transfer proteins (LTPs), thionins, snakins, hevein-like peptides, knottin-type peptides, and others. It is important to characterize and study mechanism of their action in order to develop a wide range of structures with the potential to provide durable plant immunity against pathogens. We bring together recent information on the mechanisms by which AMPs are able to help the plant to thwart pathogen attack. Although permeabilizing cellular membrane is a major mechanism known for AMP action, new and diverse modes of action have recently been unearthed, including targeting of intracellular function of the pathogen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aerts AM, FranÅois IEJA, Cammue BPA, Thevissen K (2008) The mode of antifungal action of plant, insect and human defensins. Cell Mol Life Sci 65:2069–2079

    Article  CAS  PubMed  Google Scholar 

  • Amien S, Kliwer I, Márton ML, Debener T, Geiger D, Becker D, Dresselhaus T (2010) Defensin-like ZmES4 mediates pollen tube burst in maize via opening of the potassium channel KZM1. PLoS Biol 8:e1000388

    Article  PubMed  PubMed Central  Google Scholar 

  • Bolton MD (2009) Primary metabolism and plant defense—fuel for the fire. MPMI 22:487–497

    Article  CAS  PubMed  Google Scholar 

  • Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250

    Article  CAS  PubMed  Google Scholar 

  • Brown JKM (2002) Yield penalties of disease resistance in crops. Curr Opin Plant Biol 5:1–6

    Article  Google Scholar 

  • Burman R, Gunasekera S, Strömstedt AA, Göransson U (2014) Chemistry and biology of cyclotides: circular plant peptides outside the box. J Nat Prod 77:724–736

    Article  CAS  PubMed  Google Scholar 

  • Cammue BP, De Bolle MF, Terras FR, Proost P, Van Damme J, Rees SB, Vanderleyden J, Broekaert WF (1992) Isolation and characterization of a novel class of plant antimicrobial peptides form Mirabilis jalapa L seeds. J Biol Chem 267:2228–2233

    CAS  PubMed  Google Scholar 

  • Chae K, Kieslich CA, Morikis D, Kim SC, Lord EM (2009) A gain-of-function mutation of Arabidopsis lipid transfer protein 5 disturbs pollen tube tip growth and fertilization. Plant Cell 21:3902–3914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814

    Article  CAS  PubMed  Google Scholar 

  • Choi KY, Chow LN, Mookherjee N (2012) Cationic host defence peptides: multifaceted role in immune modulation and inflammation. J Innate Immun 4:361–370

    CAS  PubMed  Google Scholar 

  • DeBono A, Yeats TH, Rose JKC, Bird D, Jetter R, Kunst L, Samuels L (2009) Arabidopsis LTPG is a glycosylphosphatidylinositol-anchored lipid transfer protein required for export of lipids to the plant surface. Plant Cell 21:1230–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doughty J, Dixon S, Hiscock SJ, Willis AC, Parkin IAP, Dickinson HG (1998) PCP–A1, a defensin-like Brassica pollen coat protein that binds the S locus glycoprotein, is the product of gametophytic gene expression. Plant Cell 10:1333–1347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gennaro R, Zanetti M (2000) Structural features and biological activities of the cathelicidin-derived antimicrobial peptides. Pept Sci 55:31–49

    Article  CAS  Google Scholar 

  • Goyal RK, Mattoo AK (2014) Multitasking antimicrobial peptides in plant development and host defense against biotic/abiotic stress. Plant Sci 228:135–149. doi:10.1016/j.plantsci.2014.05.012

    Article  CAS  PubMed  Google Scholar 

  • Goyal RK, Hancock REW, Mattoo AK, Misra S (2013) Expression of an engineered heterologous antimicrobial peptide in potato alters plant development and mitigates normal abiotic and biotic responses. PLoS ONE 8:e82838

    Article  PubMed  PubMed Central  Google Scholar 

  • Graham MA, Silverstein KAT, Cannon SB, VandenBosch KA (2004) Computational identification and characterization of novel genes from legumes. Plant Physiol 135:1179–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammami R, Hamida JB, Vergoten G, Fliss I (2009) PhytAMP: a database dedicated to plant antimicrobial peptides. Nucleic Acids Res 37:D963–D968. doi:10.1093/nar/gkn655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henriques ST, Melo MN, Castanho MA (2006) Cell-penetrating peptides and antimicrobial peptides: how different are they? Biochem J 399:1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hilchie AL, Wuerth K, Hancock REW (2013) Immune modulation by multifaceted cationic host defense (antimicrobial) peptides. Nat Chem Biol 9:61–768

    Article  Google Scholar 

  • Holaskova E, Galuszka P, Frebort I, Oz MT (2015) Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology. Biotechnol Adv 33:1005–1023

    Article  CAS  PubMed  Google Scholar 

  • Kim DH, Lee DG, Kim KL, Lee Y (2001) Internalization of tenecin 3 by a fungal cellular process is essential for its fungicidal effect on Candida albicans. Eur J Biochem 268:4449–4458

    Article  CAS  PubMed  Google Scholar 

  • Lacerda AF, Vasconcelos ÉAR, Pelegrini PB, Grossi de Sa MF (2014) Antifungal defensins and their role in plant defense. Front Microbiol 5:116. doi:10.3389/fmicb.2014.00116

    Article  PubMed  PubMed Central  Google Scholar 

  • Liew PS, Hair-Bejo H (2015) Farming of plant-based veterinary vaccines and their applications for disease prevention in animals. Adv Virol 2015:936940. doi:10.1155/2015/936940

    Article  PubMed  PubMed Central  Google Scholar 

  • Marshall E, Costa LM, Gutierrez-Marcos J (2011) Cysteine-rich peptides (CRPs) mediate diverse aspects of cell-cell communication in plant reproduction and development. J Exp Bot 62:1677–1686

    Article  CAS  PubMed  Google Scholar 

  • Molina A, García-Olmedo F (1997) Enhanced tolerance to bacterial pathogens caused by the transgenic expression of barley lipid transfer protein LTP2. Plant J 12:669–675

    Article  CAS  PubMed  Google Scholar 

  • Muñoz A, Gandía M, Harries E, Carmona L, Read ND, Marcos JF (2013) Understanding the mechanism of action of cell-penetrating antifungal peptides using the rationally designed hexapeptide PAF26 as a model. Fungal Biol Rev 26:146–155

    Article  Google Scholar 

  • Nahirñak V, Almasia NI, Fernandez PV, Hopp HE, Estevez JM, Carrari F, Vazquez-Rovere C (2012) Potato Snakin-1 gene silencing affects cell division, primary metabolism, and cell wall composition. Plant Physiol 158:252–263

    Article  PubMed  PubMed Central  Google Scholar 

  • Nawrot R, Barylski J, Nowicki G, Broniarczyk J, Buchwald W, Goździcka-Józefiaket A (2014) Plant antimicrobial peptides. Folia Microbiol 59:181–196

    Article  CAS  Google Scholar 

  • Nieuwland J, Feron R, Huisman BAH, Fasolino A, Hilbers CW, Derksen J, Mariani C (2005) Lipid transfer proteins enhance cell wall extension in tobacco. Plant Cell 17:2009–2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okuda S, Tsutsui H, Shiina K, Sprunck S, Takeuchi H, Yui R, Kasahara RD, Hamamura Y, Mizukami A, Susaki D, Kawano N, Sakakibara T, Namiki S, Itoh K, Otsuka K, Matsuzaki M, Nozaki H, Kuroiwa T, Nakano A, Kanaoka MM, Dresselhaus T, Sasaki N, Higashiyama T (2009) Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. Nature 458:357–361

    Article  CAS  PubMed  Google Scholar 

  • Paiva AD and Breukink E (2013) Antimicrobial peptides produced by microorganisms. In: Hiemstra PS, Zaat SAJ (eds) Antimicrobial peptides and innate immunity—progress in inflammation research. Springer, Basel, pp 53–95. doi:10.1007/978-3-0348-0541-4_2

    Google Scholar 

  • Park SY, Jauh GY, Mollet JC, Eckard KJ, Nothnagel EA, Walling LL, Lord EM (2000) A lipid transfer-like protein is necessary for lily pollen tube adhesion to an in vitro stylar matrix. Plant Cell 12:151–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelegrini PB, del Sarto RP, Silva ON, Franco OL, Grossi-De-Sa MF (2011) Antibacterial peptides from plants: what they are and how they probably work. Biochem Res Int 2011:250349

    Google Scholar 

  • Penterman J, Abo RP, De Nisco NJ, Arnold MF, Longhi R, Zanda M, Walker GC (2014) Host plant peptides elicit a transcriptional response to control the Sinorhizobium meliloti cell cycle during symbiosis. Proc Nat Acad Sci USA 111:3561–3566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plattner S, Gruber C, Stadlmann J, Widmann S, Gruber CW, Altmann F, Bohlmann H (2015) Isolation and characterization of a thionin proprotein-processing enzyme from barley. J Biol Chem 290:18056–18067. doi:10.1074/jbc.M115.647859

    Article  CAS  PubMed  Google Scholar 

  • Ponz F, Paz-Ares J, Hernandez-Lucas C, Carbonero P, Garcia-Olmedo F (1983) Synthesis and processing of thionin precursors in developing endosperm from barley (Hordeum vulgare L.). EMBO J 2:1035–1040

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sagaram US, Pandurangi R, Karu J, Smith TJ, Shah DM (2011) Structure-activity determinants in antifungal plant defensins MsDef1 and MtDef4 with different modes of action against Fusarium graminearum. PLoS ONE 6:e18550. doi:10.1371/journal.pone.0018550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segura A, Moreno M, Madueno F, Garcia-Olmedo F (1993) Snakin-1, a peptide from potato that is active against plant pathogens. MPMI 12:16–23

    Article  Google Scholar 

  • Shai Y (2002) Mode of action of membrane active antimicrobial peptides. Biopolymers (Pept Sci) 66:236–248

    Article  CAS  Google Scholar 

  • Stec B (2006) Plant thionins—the structural perspective. Cell Mol Life Sci 63:1370–1385

    Article  CAS  PubMed  Google Scholar 

  • Stotz HU, Spence B, Wang Y (2009) A defensin from tomato with dual function in defense and development. Plant Mol Biol 71:131–143

    Article  CAS  PubMed  Google Scholar 

  • Stotz HU, Waller F and Wang K (2013) Innate immunity in plants: the role of antimicrobial peptides. In: Hiemstra PS, Zaat SAJ (eds) Antimicrobial peptides and innate immunity, progress in inflammation research, Springer, Basel, pp 29–51. doi:10.1007/978-3-0348-0541-4_2

    Google Scholar 

  • Takayama S, Shimosato H, Shiba H, Funato M, Che FS, Watanabe M, Iwano M, Isogai A (2001) Direct ligand-receptor complex interaction controls Brassica self-incompatibility. Nature 413:534–538

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi H, Higashiyama T (2012) A species-specific cluster of defensin-like genes encodes diffusible pollen tube attractants in Arabidopsis. PLoS Biol 10:e1001449. doi:10.1371/journal.pbio.1001449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tavormina P, Coninck B, Nikonorova N, Smet I, Cammuea BPA (2015) The plant peptidome: an expanding repertoire of structural features and biological functions. Plant Cell 27:2095–2118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thevissen K, Ferket KKA, François IEJA, Cammue BPA (2003) Interactions of antifungal plant defensins with fungal membrane components. Peptides 24:1705–1712

    Article  CAS  PubMed  Google Scholar 

  • van der Weerden NL, Bleackley MR, Anderson MA (2013) Properties and mechanisms of action of naturally occurring antifungal peptides. Cell Mol Life Sci 70:3545–3570

    Article  PubMed  Google Scholar 

  • Van Parijs J, Broekaert WF, Goldstein IJ, Peumans WJ (1991) Hevein an antifungal protein from rubber-tree (Hevea braziliensis) latex. Planta 183:258–264

    Article  PubMed  Google Scholar 

  • Vriens K, Cammue BPA, Thevissen K (2014) Antifungal plant defensins: mechanisms of action and production. Molecules 19:12280–12303. doi:10.3390/molecules190812280

    Article  PubMed  Google Scholar 

  • Wimley WC (2010) Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chem Biol 5:905–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55:27–55

    Article  CAS  PubMed  Google Scholar 

  • Yount NY, Yeaman MR (2013) Peptide antimicrobials: cell wall as a bacterial target. Ann N Y Acad Sci 1277:127–138

    Article  CAS  PubMed  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Autar K. Mattoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Goyal, R.K., Mattoo, A.K. (2016). Plant Antimicrobial Peptides. In: Epand, R. (eds) Host Defense Peptides and Their Potential as Therapeutic Agents. Springer, Cham. https://doi.org/10.1007/978-3-319-32949-9_5

Download citation

Publish with us

Policies and ethics