Advertisement

Host Defense Peptides and Their Advancements in Translational Staphylococcus aureus Research

  • Sarah C. Mansour
  • Robert E.W. Hancock
  • Michael Otto
Chapter

Abstract

Staphylococcus aureus is responsible for a multitude of infections ranging from skin and soft tissue infections to more severe invasive diseases. In response to S. aureus, host defense peptides (HDPs) are produced as nature’s own sentinel effector molecules. HDPs are small, often cationic, molecules that possess numerous biological activities, such as antimicrobial activity, cellular recruitment, anti-inflammatory properties, and wound healing, all of which play a role in controlling S. aureus infections. In hopes of capitalizing on the powerful anti-infective functions of HDPs, there has been a considerable amount of interest in deriving HDP-based therapeutics. Here, we highlight current advancements in HDP research, constraints to commercial development, and solutions for safer and more feasible HDP-based therapies against S. aureus.

Keywords

Antimicrobial Activity Minimal Inhibitory Concentration Toxic Shock Syndrome Atopic Dermatitis Patient Aureus Infection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ahn SH, Deshmukh H, Johnson N, Cowell LG, Rude TH, Scott WK, Nelson CL, Zaas AK, Marchuk DA, Keum S, Lamlertthon S, Sharma-Kuinkel BK, Sempowski GD, Fowler VG Jr (2010) Two genes on A/J chromosome 18 are associated with susceptibility to Staphylococcus aureus infection by combined microarray and QTL analyses. PLoS Pathog 6(9):e1001088CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alalwani SM, Sierigk J, Herr C, Pinkenburg O, Gallo R, Vogelmeier C, Bals R (2010) The antimicrobial peptide LL-37 modulates the inflammatory and host defense response of human neutrophils. Eur J Immunol 40(4):1118–1126CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bahar AA, Ren D (2013) Antimicrobial peptides. Pharmaceuticals (Basel) 6(12):1543–1575CrossRefGoogle Scholar
  4. Baker MP, Reynolds HM, Lumicisi B, Bryson CJ (2010) Immunogenicity of protein therapeutics: the key causes, consequences and challenges. Self Nonself 1(4):314–322CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bera A, Herbert S, Jakob A, Vollmer W, Gotz F (2005) Why are pathogenic staphylococci so lysozyme resistant? The peptidoglycan O-acetyltransferase OatA is the major determinant for lysozyme resistance of Staphylococcus aureus. Mol Microbiol 55(3):778–787CrossRefPubMedGoogle Scholar
  6. Braff MH, Jones AL, Skerrett SJ, Rubens CE (2007) Staphylococcus aureus exploits cathelicidin antimicrobial peptides produced during early pneumonia to promote staphylokinase-dependent fibrinolysis. J Infect Dis 195(9):1365–1372CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cardot-Martin E, Casalegno JS, Badiou C, Dauwalder O, Keller D, Prevost G, Rieg S, Kern WV, Cuerq C, Etienne J, Vandenesch F, Lina G, Dumitrescu O (2015) alpha-Defensins partially protect human neutrophils against Panton-Valentine leukocidin produced by Staphylococcus aureus. Lett Appl Microbiol 61(2):158–164CrossRefPubMedGoogle Scholar
  8. Chen X, Niyonsaba F, Ushio H, Okuda D, Nagaoka I, Ikeda S, Okumura K, Ogawa H (2005) Synergistic effect of antibacterial agents human beta-defensins, cathelicidin LL-37 and lysozyme against Staphylococcus aureus and Escherichia coli. J Dermatol Sci 40(2):123–132CrossRefPubMedGoogle Scholar
  9. Cho JS, Pietras EM, Garcia NC, Ramos RI, Farzam DM, Monroe HR, Magorien JE, Blauvelt A, Kolls JK, Cheung AL, Cheng G, Modlin RL, Miller LS (2010) IL-17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice. J Clin Invest 120(5):1762–1773CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cho SH, Strickland I, Tomkinson A, Fehringer AP, Gelfand EW, Leung DY (2001) Preferential binding of Staphylococcus aureus to skin sites of Th2-mediated inflammation in a murine model. J Invest Dermatol 116(5):658–663CrossRefPubMedGoogle Scholar
  11. Choe H, Narayanan AS, Gandhi DA, Weinberg A, Marcus RE, Lee Z, Bonomo RA, Greenfield EM (2015) Immunomodulatory peptide IDR-1018 decreases implant infection and preserves osseointegration. Clin Orthop Relat Res 473(9):2898–2907CrossRefPubMedGoogle Scholar
  12. Clarke SR, Mohamed R, Bian L, Routh AF, Kokai-Kun JF, Mond JJ, Tarkowski A, Foster SJ (2007) The Staphylococcus aureus surface protein IsdA mediates resistance to innate defenses of human skin. Cell Host Microbe 1(3):199–212CrossRefPubMedGoogle Scholar
  13. Coates R, Moran J, Horsburgh MJ (2014) Staphylococci: colonizers and pathogens of human skin. Future Microbiol 9(1):75–91CrossRefPubMedGoogle Scholar
  14. Collins LV, Kristian SA, Weidenmaier C, Faigle M, Van Kessel KP, Van Strijp JA, Gotz F, Neumeister B, Peschel A (2002) Staphylococcus aureus strains lacking D-alanine modifications of teichoic acids are highly susceptible to human neutrophil killing and are virulence attenuated in mice. J Infect Dis 186(2):214–219CrossRefPubMedGoogle Scholar
  15. David MZ, Daum RS (2010) Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev 23(3):616–687CrossRefPubMedPubMedCentralGoogle Scholar
  16. Davidson DJ, Currie AJ, Reid GS, Bowdish DM, MacDonald KL, Ma RC, Hancock RE, Speert DP (2004) The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization. J Immunol 172(2):1146–1156CrossRefPubMedGoogle Scholar
  17. de la Fuente-Nunez C, Reffuveille F, Mansour SC, Reckseidler-Zenteno SL, Hernandez D, Brackman G, Coenye T, Hancock RE (2015) D-enantiomeric peptides that eradicate wild-type and multidrug-resistant biofilms and protect against lethal Pseudomonas aeruginosa infections. Chem Biol 22(2):196–205CrossRefPubMedPubMedCentralGoogle Scholar
  18. Duplantier AJ, van Hoek ML (2013) The human cathelicidin antimicrobial peptide LL-37 as a potential treatment for polymicrobial infected wounds. Front Immunol 4:143CrossRefPubMedPubMedCentralGoogle Scholar
  19. Flad T, Bogumil R, Tolson J, Schittek B, Garbe C, Deeg M, Mueller CA, Kalbacher H (2002) Detection of dermcidin-derived peptides in sweat by ProteinChip technology. J Immunol Methods 270(1):53–62CrossRefPubMedGoogle Scholar
  20. Glaser R, Becker K, von Eiff C, Meyer-Hoffert U, Harder J (2014) Decreased susceptibility of Staphylococcus aureus small-colony variants toward human antimicrobial peptides. J Invest Dermatol 134(9):2347–2350CrossRefPubMedGoogle Scholar
  21. Gu B, Kelesidis T, Tsiodras S, Hindler J, Humphries RM (2013) The emerging problem of linezolid-resistant Staphylococcus. J Antimicrob Chemother 68(1):4–11CrossRefPubMedGoogle Scholar
  22. Haney EF, Mansour SC, Hilchie AL, de la Fuente-Nunez C, Hancock RE (2015) High throughput screening methods for assessing antibiofilm and immunomodulatory activities of synthetic peptides. PeptidesGoogle Scholar
  23. Harder J, Schroder JM (2002) RNase 7, a novel innate immune defense antimicrobial protein of healthy human skin. J Biol Chem 277(48):46779–46784CrossRefPubMedGoogle Scholar
  24. Harder J, Bartels J, Christophers E, Schroder JM (1997) A peptide antibiotic from human skin. Nature 387(6636):861CrossRefPubMedGoogle Scholar
  25. Harder J, Bartels J, Christophers E, Schroder JM (2001) Isolation and characterization of human beta -defensin-3, a novel human inducible peptide antibiotic. J Biol Chem 276(8):5707–5713CrossRefPubMedGoogle Scholar
  26. Heilborn JD, Weber G, Gronberg A, Dieterich C, Stahle M (2010) Topical treatment with the vitamin D analogue calcipotriol enhances the upregulation of the antimicrobial protein hCAP18/LL-37 during wounding in human skin in vivo. Exp Dermatol 19(4):332–338CrossRefPubMedGoogle Scholar
  27. Herold BC, Immergluck LC, Maranan MC, Lauderdale DS, Gaskin RE, Boyle-Vavra S, Leitch CD, Daum RS (1998) Community-acquired methicillin-resistant Staphylococcus aureus in children with no identified predisposing risk. JAMA 279(8):593–598CrossRefPubMedGoogle Scholar
  28. Jia T, Serbina NV, Brandl K, Zhong MX, Leiner IM, Charo IF, Pamer EG (2008) Additive roles for MCP-1 and MCP-3 in CCR2-mediated recruitment of inflammatory monocytes during Listeria monocytogenes infection. J Immunol 180(10):6846–6853CrossRefPubMedPubMedCentralGoogle Scholar
  29. Jin T, Bokarewa M, Foster T, Mitchell J, Higgins J, Tarkowski A (2004) Staphylococcus aureus resists human defensins by production of staphylokinase, a novel bacterial evasion mechanism. J Immunol 172(2):1169–1176CrossRefPubMedGoogle Scholar
  30. Jones T, Yeaman MR, Sakoulas G, Yang SJ, Proctor RA, Sahl HG, Schrenzel J, Xiong YQ, Bayer AS (2008) Failures in clinical treatment of Staphylococcus aureus Infection with daptomycin are associated with alterations in surface charge, membrane phospholipid asymmetry, and drug binding. Antimicrob Agents Chemother 52(1):269–278CrossRefPubMedPubMedCentralGoogle Scholar
  31. Jones TD, Crompton LJ, Carr FJ, Baker MP (2009) Deimmunization of monoclonal antibodies. Methods Mol Biol 525:405–423, xivGoogle Scholar
  32. Kim H, Jang JH, Kim SC, Cho JH (2014) De novo generation of short antimicrobial peptides with enhanced stability and cell specificity. J Antimicrob Chemother 69(1):121–132CrossRefPubMedGoogle Scholar
  33. Kisich KO, Howell MD, Boguniewicz M, Heizer HR, Watson NU, Leung DY (2007) The constitutive capacity of human keratinocytes to kill Staphylococcus aureus is dependent on beta-defensin 3. J Invest Dermatol 127(10):2368–2380CrossRefPubMedGoogle Scholar
  34. Klevens RM, Morrison MA, Nadle J, Petit S, Gershman K, Ray S, Harrison LH, Lynfield R, Dumyati G, Townes JM, Craig AS, Zell ER, Fosheim GE, McDougal LK, Carey RB, Fridkin SK, M.I. Active Bacterial Core surveillance (2007) Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 298(15):1763–1771Google Scholar
  35. Kristian SA, Lauth X, Nizet V, Goetz F, Neumeister B, Peschel A, Landmann R (2003) Alanylation of teichoic acids protects Staphylococcus aureus against Toll-like receptor 2-dependent host defense in a mouse tissue cage infection model. J Infect Dis 188(3):414–423CrossRefPubMedGoogle Scholar
  36. Kurihara T, Warr G, Loy J, Bravo R (1997) Defects in macrophage recruitment and host defense in mice lacking the CCR2 chemokine receptor. J Exp Med 186(10):1757–1762CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kurosaka K, Chen Q, Yarovinsky F, Oppenheim JJ, Yang D (2005) Mouse cathelin-related antimicrobial peptide chemoattracts leukocytes using formyl peptide receptor-like 1/mouse formyl peptide receptor-like 2 as the receptor and acts as an immune adjuvant. J Immunol 174(10):6257–6265CrossRefPubMedGoogle Scholar
  38. Lai Y, Villaruz AE, Li M, Cha DJ, Sturdevant DE, Otto M (2007) The human anionic antimicrobial peptide dermcidin induces proteolytic defence mechanisms in staphylococci. Mol Microbiol 63(2):497–506CrossRefPubMedGoogle Scholar
  39. Laouini D, Kawamoto S, Yalcindag A, Bryce P, Mizoguchi E, Oettgen H, Geha RS (2003) Epicutaneous sensitization with superantigen induces allergic skin inflammation. J Allergy Clin Immunol 112(5):981–987CrossRefPubMedGoogle Scholar
  40. Lehrer RI (2007) Multispecific myeloid defensins. Curr Opin Hematol 14(1):16–21CrossRefPubMedGoogle Scholar
  41. Levin TP, Suh B, Axelrod P, Truant AL, Fekete T (2005) Potential clindamycin resistance in clindamycin-susceptible, erythromycin-resistant Staphylococcus aureus: report of a clinical failure. Antimicrob Agents Chemother 49(3):1222–1224CrossRefPubMedPubMedCentralGoogle Scholar
  42. Li M, Cha DJ, Lai Y, Villaruz AE, Sturdevant DE, Otto M (2007a) The antimicrobial peptide-sensing system aps of Staphylococcus aureus. Mol Microbiol 66(5):1136–1147CrossRefPubMedGoogle Scholar
  43. Li M, Lai Y, Villaruz AE, Cha DJ, Sturdevant DE, Otto M (2007b) Gram-positive three-component antimicrobial peptide-sensing system. Proc Natl Acad Sci USA 104(22):9469–9474CrossRefPubMedPubMedCentralGoogle Scholar
  44. Li Y (2009) Carrier proteins for fusion expression of antimicrobial peptides in Escherichia coli. Biotechnol Appl Biochem 54(1):1–9CrossRefPubMedGoogle Scholar
  45. Li B, Jiang B, Dietz MJ, Smith ES, Clovis NB, Rao KM (2010) Evaluation of local MCP-1 and IL-12 nanocoatings for infection prevention in open fractures. J Orthop Res 28(1):48–54PubMedGoogle Scholar
  46. Liang SC, Tan XY, Luxenberg DP, Karim R, Dunussi-Joannopoulos K, Collins M, Fouser LA (2006) Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 203(10):2271–2279CrossRefPubMedPubMedCentralGoogle Scholar
  47. Mansour SC, Pena OM, Hancock RE (2014) Host defense peptides: front-line immunomodulators. Trends Immunol 35(9):443–450CrossRefPubMedGoogle Scholar
  48. Menzies BE, Kenoyer A (2006) Signal transduction and nuclear responses in Staphylococcus aureus-induced expression of human beta-defensin 3 in skin keratinocytes. Infect Immun 74(12):6847–6854CrossRefPubMedPubMedCentralGoogle Scholar
  49. Midorikawa K, Ouhara K, Komatsuzawa H, Kawai T, Yamada S, Fujiwara T, Yamazaki K, Sayama K, Taubman MA, Kurihara H, Hashimoto K, Sugai M (2003) Staphylococcus aureus susceptibility to innate antimicrobial peptides, beta-defensins and CAP18, expressed by human keratinocytes. Infect Immun 71(7):3730–3739CrossRefPubMedPubMedCentralGoogle Scholar
  50. Milner JD, Brenchley JM, Laurence A, Freeman AF, Hill BJ, Elias KM, Kanno Y, Spalding C, Elloumi HZ, Paulson ML, Davis J, Hsu A, Asher AI, O’Shea J, Holland SM, Paul WE, Douek DC (2008) Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 452(7188):773–776CrossRefPubMedPubMedCentralGoogle Scholar
  51. Mookherjee N, Lippert DN, Hamill P, Falsafi R, Nijnik A, Kindrachuk J, Pistolic J, Gardy J, Miri P, Naseer M, Foster LJ, Hancock RE (2009) Intracellular receptor for human host defense peptide LL-37 in monocytes. J Immunol 183(4):2688–2696CrossRefPubMedGoogle Scholar
  52. Morizane S, Yamasaki K, Muhleisen B, Kotol PF, Murakami M, Aoyama Y, Iwatsuki K, Hata T, Gallo RL (2012) Cathelicidin antimicrobial peptide LL-37 in psoriasis enables keratinocyte reactivity against TLR9 ligands. J Invest Dermatol 132(1):135–143CrossRefPubMedPubMedCentralGoogle Scholar
  53. Murakami M, Ohtake T, Dorschner RA, Schittek B, Garbe C, Gallo RL (2002) Cathelicidin anti-microbial peptide expression in sweat, an innate defense system for the skin. J Invest Dermatol 119(5):1090–1095CrossRefPubMedGoogle Scholar
  54. Nijnik A, Madera L, Ma S, Waldbrook M, Elliott MR, Easton DM, Mayer ML, Mullaly SC, Kindrachuk J, Jenssen H, Hancock RE (2010) Synthetic cationic peptide IDR-1002 provides protection against bacterial infections through chemokine induction and enhanced leukocyte recruitment. J Immunol 184(5):2539–2550CrossRefPubMedGoogle Scholar
  55. Niyonsaba F, Someya A, Hirata M, Ogawa H, Nagaoka I (2001) Evaluation of the effects of peptide antibiotics human beta-defensins-1/-2 and LL-37 on histamine release and prostaglandin D(2) production from mast cells. Eur J Immunol 31(4):1066–1075CrossRefPubMedGoogle Scholar
  56. Nizet V, Ohtake T, Lauth X, Trowbridge J, Rudisill J, Dorschner RA, Pestonjamasp V, Piraino J, Huttner K, Gallo RL (2001) Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 414(6862):454–457CrossRefPubMedGoogle Scholar
  57. Nomura I, Goleva E, Howell MD, Hamid QA, Ong PY, Hall CF, Darst MA, Gao B, Boguniewicz M, Travers JB, Leung DY (2003) Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J Immunol 171(6):3262–3269CrossRefPubMedGoogle Scholar
  58. Ong PY, Ohtake T, Brandt C, Strickland I, Boguniewicz M, Ganz T, Gallo RL, Leung DY (2002) Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med 347(15):1151–1160CrossRefPubMedGoogle Scholar
  59. Otto M (2010) Staphylococcus colonization of the skin and antimicrobial peptides. Expert Rev Dermatol 5(2):183–195CrossRefPubMedPubMedCentralGoogle Scholar
  60. Ouhara K, Komatsuzawa H, Kawai T, Nishi H, Fujiwara T, Fujiue Y, Kuwabara M, Sayama K, Hashimoto K, Sugai M (2008) Increased resistance to cationic antimicrobial peptide LL-37 in methicillin-resistant strains of Staphylococcus aureus. J Antimicrob Chemother 61(6):1266–1269CrossRefPubMedPubMedCentralGoogle Scholar
  61. Peschel A, Jack RW, Otto M, Collins LV, Staubitz P, Nicholson G, Kalbacher H, Nieuwenhuizen WF, Jung G, Tarkowski A, van Kessel KP, van Strijp JA (2001) Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l-lysine. J Exp Med 193(9):1067–1076CrossRefPubMedPubMedCentralGoogle Scholar
  62. Peschel A, Otto M, Jack RW, Kalbacher H, Jung G, Gotz F (1999) Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J Biol Chem 274(13):8405–8410CrossRefPubMedGoogle Scholar
  63. Reding MT (2006) Immunological aspects of inhibitor development. Haemophilia 12(6):30–35; discussion 35–36Google Scholar
  64. Reffuveille F, de la Fuente-Nunez C, Mansour S, Hancock RE (2014) A broad-spectrum antibiofilm peptide enhances antibiotic action against bacterial biofilms. Antimicrob Agents Chemother 58(9):5363–5371CrossRefPubMedPubMedCentralGoogle Scholar
  65. Renner ED, Rylaarsdam S, Anover-Sombke S, Rack AL, Reichenbach J, Carey JC, Zhu Q, Jansson AF, Barboza J, Schimke LF, Leppert MF, Getz MM, Seger RA, Hill HR, Belohradsky BH, Torgerson TR, Ochs HD (2008) Novel signal transducer and activator of transcription 3 (STAT3) mutations, reduced T(H)17 cell numbers, and variably defective STAT3 phosphorylation in hyper-IgE syndrome. J Allergy Clin Immunol 122(1):181–187CrossRefPubMedPubMedCentralGoogle Scholar
  66. Rieg S, Steffen H, Seeber S, Humeny A, Kalbacher H, Dietz K, Garbe C, Schittek B (2005) Deficiency of dermcidin-derived antimicrobial peptides in sweat of patients with atopic dermatitis correlates with an impaired innate defense of human skin in vivo. J Immunol 174(12):8003–8010CrossRefPubMedGoogle Scholar
  67. Rozek A, Powers JP, Friedrich CL, Hancock RE (2003) Structure-based design of an indolicidin peptide analogue with increased protease stability. Biochemistry 42(48):14130–14138CrossRefPubMedGoogle Scholar
  68. Schauber J, Oda Y, Buchau AS, Yun QC, Steinmeyer A, Zugel U, Bikle DD, Gallo RL (2008) Histone acetylation in keratinocytes enables control of the expression of cathelicidin and CD14 by 1,25-dihydroxyvitamin D3. J Invest Dermatol 128(4):816–824CrossRefPubMedGoogle Scholar
  69. Schittek B, Hipfel R, Sauer B, Bauer J, Kalbacher H, Stevanovic S, Schirle M, Schroeder K, Blin N, Meier F, Rassner G, Garbe C (2001) Dermcidin: a novel human antibiotic peptide secreted by sweat glands. Nat Immunol 2(12):1133–1137CrossRefPubMedGoogle Scholar
  70. Scott MG, Dullaghan E, Mookherjee N, Glavas N, Waldbrook M, Thompson A, Wang A, Lee K, Doria S, Hamill P, Yu JJ, Li Y, Donini O, Guarna MM, Finlay BB, North JR, Hancock RE (2007) An anti-infective peptide that selectively modulates the innate immune response. Nat Biotechnol 25(4):465–472CrossRefPubMedGoogle Scholar
  71. Sieprawska-Lupa M, Mydel P, Krawczyk K, Wojcik K, Puklo M, Lupa B, Suder P, Silberring J, Reed M, Pohl J, Shafer W, McAleese F, Foster T, Travis J, Potempa J (2004) Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob Agents Chemother 48(12):4673–4679CrossRefPubMedPubMedCentralGoogle Scholar
  72. Simanski M, Dressel S, Glaser R, Harder J (2010) RNase 7 protects healthy skin from Staphylococcus aureus colonization. J Invest Dermatol 130(12):2836–2838CrossRefPubMedGoogle Scholar
  73. Song C, Weichbrodt C, Salnikov ES, Dynowski M, Forsberg BO, Bechinger B, Steinem C, de Groot BL, Zachariae U, Zeth K (2013) Crystal structure and functional mechanism of a human antimicrobial membrane channel. Proc Natl Acad Sci USA 110(12):4586–4591CrossRefPubMedPubMedCentralGoogle Scholar
  74. Sorensen OE, Thapa DR, Roupe KM, Valore EV, Sjobring U, Roberts AA, Schmidtchen A, Ganz T (2006) Injury-induced innate immune response in human skin mediated by transactivation of the epidermal growth factor receptor. J Clin Invest 116(7):1878–1885CrossRefPubMedPubMedCentralGoogle Scholar
  75. Steinstraesser L, Hirsch T, Schulte M, Kueckelhaus M, Jacobsen F, Mersch EA, Stricker I, Afacan N, Jenssen H, Hancock RE, Kindrachuk J (2012) Innate defense regulator peptide 1018 in wound healing and wound infection. PLoS One 7(8):e39373CrossRefPubMedPubMedCentralGoogle Scholar
  76. Subbalakshmi C, Nagaraj R, Sitaram N (1999) Biological activities of C-terminal 15-residue synthetic fragment of melittin: design of an analog with improved antibacterial activity. FEBS Lett 448(1):62–66CrossRefPubMedGoogle Scholar
  77. Tiwari HK, Sen MR (2006) Emergence of vancomycin resistant Staphylococcus aureus (VRSA) from a tertiary care hospital from northern part of India. BMC Infect Dis 6:156CrossRefPubMedPubMedCentralGoogle Scholar
  78. Tjabringa GS, Ninaber DK, Drijfhout JW, Rabe KF, Hiemstra PS (2006) Human cathelicidin LL-37 is a chemoattractant for eosinophils and neutrophils that acts via formyl-peptide receptors. Int Arch Allergy Immunol 140(2):103–112CrossRefPubMedGoogle Scholar
  79. Turner J, Cho Y, Dinh NN, Waring AJ, Lehrer RI (1998) Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob Agents Chemother 42(9):2206–2214PubMedPubMedCentralGoogle Scholar
  80. Voss E, Wehkamp J, Wehkamp K, Stange EF, Schroder JM, Harder J (2006) NOD2/CARD15 mediates induction of the antimicrobial peptide human beta-defensin-2. J Biol Chem 281(4):2005–2011CrossRefPubMedGoogle Scholar
  81. Waldvogel FA (1999) New resistance in Staphylococcus aureus. N Engl J Med 340(7):556–557CrossRefPubMedGoogle Scholar
  82. Wang G, Hanke ML, Mishra B, Lushnikova T, Heim CE, Chittezham Thomas V, Bayles KW, Kielian T (2014) Transformation of human cathelicidin LL-37 into selective, stable, and potent antimicrobial compounds. ACS Chem Biol 9(9):1997–2002CrossRefPubMedPubMedCentralGoogle Scholar
  83. Weidenmaier C, Peschel A, Kempf VA, Lucindo N, Yeaman MR, Bayer AS (2005) DltABCD- and MprF-mediated cell envelope modifications of Staphylococcus aureus confer resistance to platelet microbicidal proteins and contribute to virulence in a rabbit endocarditis model. Infect Immun 73(12):8033–8038CrossRefPubMedPubMedCentralGoogle Scholar
  84. Yamasaki K, Di Nardo A, Bardan A, Murakami M, Ohtake T, Coda A, Dorschner RA, Bonnart C, Descargues P, Hovnanian A, Morhenn VB, Gallo RL (2007) Increased serine protease activity and cathelicidin promotes skin inflammation in rosacea. Nat Med 13(8):975–980CrossRefPubMedGoogle Scholar
  85. Yanagi S, Ashitani J, Ishimoto H, Date Y, Mukae H, Chino N, Nakazato M (2005) Isolation of human beta-defensin-4 in lung tissue and its increase in lower respiratory tract infection. Respir Res 6:130CrossRefPubMedPubMedCentralGoogle Scholar
  86. Yang D, Chertov O, Bykovskaia SN, Chen Q, Buffo MJ, Shogan J, Anderson M, Schroder JM, Wang JM, Howard OM, Oppenheim JJ (1999) Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286(5439):525–528CrossRefPubMedGoogle Scholar
  87. Yang D, Chen Q, Chertov O, Oppenheim JJ (2000) Human neutrophil defensins selectively chemoattract naive T and immature dendritic cells. J Leukoc Biol 68(1):9–14PubMedGoogle Scholar
  88. Yang D, de la Rosa G, Tewary P, Oppenheim JJ (2009) Alarmins link neutrophils and dendritic cells. Trends Immunol 30(11):531–537CrossRefPubMedPubMedCentralGoogle Scholar
  89. Yin LM, Edwards MA, Li J, Yip CM, Deber CM (2012) Roles of hydrophobicity and charge distribution of cationic antimicrobial peptides in peptide-membrane interactions. J Biol Chem 287(10):7738–7745CrossRefPubMedPubMedCentralGoogle Scholar
  90. Yount NY, Yeaman MR (2006) Structural congruence among membrane-active host defense polypeptides of diverse phylogeny. Biochim Biophys Acta 1758(9):1373–1386CrossRefPubMedGoogle Scholar
  91. Zanger P, Holzer J, Schleucher R, Scherbaum H, Schittek B, Gabrysch S (2010) Severity of Staphylococcus aureus infection of the skin is associated with inducibility of human beta-defensin 3 but not human beta-defensin 2. Infect Immun 78(7):3112–3117CrossRefPubMedPubMedCentralGoogle Scholar
  92. Zanger P, Holzer J, Schleucher R, Steffen H, Schittek B, Gabrysch S (2009) Constitutive expression of the antimicrobial peptide RNase 7 is associated with Staphylococcus aureus infection of the skin. J Infect Dis 200(12):1907–1915CrossRefPubMedGoogle Scholar
  93. Zhang LJ, Guerrero-Juarez CF, Hata T, Bapat SP, Ramos R, Plikus MV, Gallo RL (2015) Innate immunity. Dermal adipocytes protect against invasive Staphylococcus aureus skin infection. Science 347(6217):67–71CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2016

Authors and Affiliations

  • Sarah C. Mansour
    • 1
    • 2
  • Robert E.W. Hancock
    • 1
  • Michael Otto
    • 2
  1. 1.Centre for Microbial Diseases and Immunity Research, Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouverCanada
  2. 2.Pathogen Molecular Genetics Section, Laboratory of BacteriologyNational Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUSA

Personalised recommendations