Skip to main content

Long-Distance Movement of Viruses in Plants

  • Chapter
  • First Online:
Current Research Topics in Plant Virology
  • 2073 Accesses

Abstract

Plant viruses are obligate, biotrophic parasites that live in the symplastic space of their hosts. After invading the host plant, viruses begin to multiply in the initially penetrated cells by establishing specific interactions between viral factors and macromolecules, structures, and processes of the host plant. Viruses then spread throughout the plant not only by moving from cell to cell through plasmodesmata, but also by moving long distance through the vascular system, usually through the phloem, to establish systemic infection. The short-distance cell-to-cell movement requires modification of plasmodesmata by viral factors such as movement proteins. Long-distance movement involves passage of viruses through various cellular barriers including the bundle sheath, vascular parenchyma, and companion cells for virus loading into sieve elements. Viruses are then passively transported through sieve elements to distant tissues. While many studies have examined virus cell-to-cell movement, few have focused on the molecular mechanisms regulating virus long-distance movement. Finely characterizing long-distance movement of viruses is challenging because of the inter-dependence of cell-to-cell and long-distance movement and because phloem is located deep within plant tissues. Nevertheless, recent studies have begun to shed light on the molecular mechanisms of long-distance movement by viruses. This chapter discusses some general features, recent progress, and future prospects of long-distance movement of viruses in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anindya R, Savithri HS (2003) Surface-exposed amino- and carboxy-terminal residues are crucial for the initiation of assembly in Pepper vein banding virus: a flexuous rod-shaped virus. Virology 316:325–336

    Article  CAS  PubMed  Google Scholar 

  • Asurmendi S, Berg RH, Koo JC, Beachy RN (2004) Coat protein regulates formation of replication complexes during tobacco mosaic virus infection. Proc Natl Acad Sci U S A 101:1415–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bamunusinghe D, Hemenway CL, Nelson RS, Sanderfoot AA, Ye CM, Silva MA, Payton M, Verchot-Lubicz J (2009) Analysis of potato virus X replicase and TGBp3 subcellular locations. Virology 393:272–285

    Article  CAS  PubMed  Google Scholar 

  • Beauchemin C, Boutet N, Laliberte JF (2007) Visualization of the interaction between the precursors of VPg, the viral protein linked to the genome of turnip mosaic virus, and the translation eukaryotic initiation factor iso 4E in Planta. J Virol 81:775–782

    Article  CAS  PubMed  Google Scholar 

  • Boyko V, Hu Q, Seemanpillai M, Ashby J, Heinlein M (2007) Validation of microtubule-associated tobacco mosaic virus RNA movement and involvement of microtubule-aligned particle trafficking. Plant J 51:589–603

    Google Scholar 

  • Brault V, Bergdoll M, Mutterer J, Prasad V, Pfeffer S, Erdinger M, Richards KE, Ziegler-Graff V (2003) Effects of point mutations in the major capsid protein of beet western yellows virus on capsid formation, virus accumulation, and aphid transmission. J Virol 77:3247–3256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrington JC, Kasschau KD, Mahajan SK, Schaad MC (1996) Cell-to-cell and long-distance transport of viruses in plants. Plant Cell 8:1669–1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chay CA, Gunasinge UB, Dinesh-Kumar SP, Miller WA, Gray SM (1996) Aphid transmission and systemic plant infection determinants of barley yellow dwarf luteovirus-PAV are contained in the coat protein readthrough domain and 17-kDa protein, respectively. Virology 219:57–65

    Article  CAS  PubMed  Google Scholar 

  • Chen MH, Citovsky V (2003) Systemic movement of a tobamovirus requires host cell pectin methylesterase. Plant J 35:386–392

    Article  CAS  PubMed  Google Scholar 

  • Chen MH, Sheng J, Hind G, Handa AK, Citovsky V (2000) Interaction between the tobacco mosaic virus movement protein and host cell pectin methylesterases is required for viral cell-to-cell movement. EMBO J 19:913–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Zhang L, Yu D (2010) Wounding-induced WRKY8 is involved in basal defense in Arabidopsis. Mol Plant-Microbe Interact 23:558–565

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Zhang L, Li D, Wang F, Yu D (2013) WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis. Proc Natl Acad Sci U S A 110:E1963–E1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chisholm ST, Mahajan SK, Whitham SA, Yamamoto ML, Carrington JC (2000) Cloning of the Arabidopsis RTM1 gene, which controls restriction of long-distance movement of tobacco etch virus. Proc Natl Acad Sci U S A 97:489–494

    Google Scholar 

  • Chisholm ST, Parra MA, Anderberg RJ, Carrington JC (2001) Arabidopsis RTM1 and RTM2 genes function in phloem to restrict long-distance movement of tobacco etch virus. Plant Physiol 127:1667–1675

    Google Scholar 

  • Contreras-Paredes CA, Silva-Rosales L, Daros JA, Alejandri-Ramirez ND, Dinkova TD (2013) The absence of eukaryotic initiation factor eIF(iso)4E affects the systemic spread of a tobacco etch virus isolate in Arabidopsis thaliana. Mol Plant Microbe Interact 26:461–470

    Google Scholar 

  • Cosson P, Sofer L, Le QH, Leger V, Schurdi-Levraud V, Whitham SA, Yamamoto ML, Gopalan S, Le Gall O, Candresse T, Carrington JC, Revers F (2010) RTM3, which controls long-distance movement of potyviruses, is a member of a new plant gene family encoding a meprin and TRAF homology domain-containing protein. Plant Physiol 154:222–232

    Google Scholar 

  • Cronin S, Verchot J, Haldeman-Cahill R, Schaad MC, Carrington JC (1995) Long-distance movement factor: a transport function of the potyvirus helper component proteinase. Plant Cell 7:549–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Decroocq V, Sicard O, Alamillo JM, Lansac M, Eyquard JP, Garcia JA, Candresse T, Le Gall O, Revers F (2006) Multiple resistance traits control plum pox virus infection in Arabidopsis thaliana. Mol Plant-Microbe Interact 19:541–549

    Google Scholar 

  • Decroocq V, Salvador B, Sicard O, Glasa M, Cosson P, Svanella-Dumas L, Revers F, Garcia JA, Candresse T (2009) The determinant of potyvirus ability to overcome the RTM resistance of Arabidopsis thaliana maps to the N-terminal region of the coat protein. Mol Plant-Microbe Interact 22:1302–1311

    Google Scholar 

  • Deom CM, Oliver MJ, Beachy RN (1987) The 30-kilodalton gene product of tobacco mosaic virus potentiates virus movement. Science 237:389–394

    Article  CAS  PubMed  Google Scholar 

  • Desvoyes B, Scholthof HB (2002) Host-dependent recombination of a tomato bushy stunt virus coat protein mutant yields truncated capsid subunits that form virus-like complexes which benefit systemic spread. Virology 304:434–442

    Google Scholar 

  • Ding X, Shintaku MH, Carter SA, Nelson RS (1996) Invasion of minor veins of tobacco leaves inoculated with tobacco mosaic virus mutants defective in phloem-dependent movement. Proc Natl Acad Sci U S A 93:11155–11160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dolja VV, Herndon KL, Pirone TP, Carrington JC (1993) Spontaneous mutagenesis of a plant potyvirus genome after insertion of a foreign gene. J Virol 67:5968–5975

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dolja VV, Haldeman R, Robertson NL, Dougherty WG, Carrington JC (1994) Distinct functions of capsid protein in assembly and movement of tobacco etch potyvirus in plants. EMBO J 13:1482–1491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dolja VV, Haldeman-Cahill R, Montgomery AE, Vandenbosch KA, Carrington JC (1995) Capsid protein determinants involved in cell-to-cell and long distance movement of tobacco etch potyvirus. Virology 206:1007–1016

    Article  CAS  PubMed  Google Scholar 

  • Dunoyer P, Thomas C, Harrison S, Revers F, Maule A (2004) A cysteine-rich plant protein potentiates potyvirus movement through an interaction with the virus genome-linked protein VPg. J Virol 78:2301–2309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Z, Johansen E, Eyers S, Thomas CL, Noel Ellis TH, Maule AJ (2004) The potyvirus recessive resistance gene, sbm1, identifies a novel role for translation initiation factor eIF4E in cell-to-cell trafficking. Plant J 40:376–385

    Google Scholar 

  • Garcia-Ruiz H, Takeda A, Chapman EJ, Sullivan CM, Fahlgren N, Brempelis KJ, Carrington JC (2010) Arabidopsis RNA-dependent RNA polymerases and dicer-like proteins in antiviral defense and small interfering RNA biogenesis during turnip mosaic virus infection. Plant Cell 22:481–496

    Google Scholar 

  • Gopinath K, Kao CC (2007) Replication-independent long-distance trafficking by viral RNAs in Nicotiana benthamiana. Plant Cell 19:1179–1191

    Google Scholar 

  • Grangeon R, Jiang J, Wan J, Agbeci M, Zheng H, Laliberte JF (2013) 6K2-induced vesicles can move cell to cell during turnip mosaic virus infection. Front Microbiol 4:351

    Article  PubMed  PubMed Central  Google Scholar 

  • Harries P, Ding B (2011) Cellular factors in plant virus movement: at the leading edge of macromolecular trafficking in plants. Virology 411:237–243

    Article  CAS  PubMed  Google Scholar 

  • Hipper C, Brault V, Ziegler-Graff V, Revers F (2013) Viral and cellular factors involved in phloem transport of plant viruses. Front Plant Sci 4:154

    Google Scholar 

  • Hipper C, Monsion B, Bortolamiol-Becet D, Ziegler-Graff V, Brault V (2014) Formation of virions is strictly required for turnip yellows virus long-distance movement in plants. J Gen Virol 95:496–505

    Article  CAS  PubMed  Google Scholar 

  • Holt CA, Beachy RN (1991) In vivo complementation of infectious transcripts from mutant tobacco mosaic virus cDNAs in transgenic plants. Virology 181:109–117

    Article  CAS  PubMed  Google Scholar 

  • Hwang J, Oh CS, Kang BC (2013) Translation elongation factor 1B (eEF1B) is an essential host factor for Tobacco mosaic virus infection in plants. Virology 439:105–114

    Article  CAS  PubMed  Google Scholar 

  • Jagadish MN, Huang D, Ward CW (1993) Site-directed mutagenesis of a potyvirus coat protein and its assembly in Escherichia coli. J Gen Virol 74:893–896

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Patarroyo C, Cabanillas DG, Zheng H, Laliberte JF (2015) The vesicle-forming 6K2 protein of turnip mosaic virus interacts with the COPII coatomer Sec24a for viral systemic infection. J Virol 89:6695–6710. doi:10.1128/JVI.00503-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin H, Li S, Villegas A Jr (2006) Down-regulation of the 26S proteasome subunit RPN9 inhibits viral systemic transport and alters plant vascular development. Plant Physiol 142:651–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaido M, Tsuno Y, Mise K, Okuno T (2009) Endoplasmic reticulum targeting of the red clover necrotic mosaic virus movement protein is associated with the replication of viral RNA1 but not that of RNA2. Virology 395:232–242

    Google Scholar 

  • Kaplan IB, Shintaku MH, Li Q, Zhang L, Marsh LE, Palukaitis P (1995) Complementation of virus movement in transgenic tobacco expressing the cucumber mosaic virus 3a gene. Virology 209:188–199

    Article  CAS  PubMed  Google Scholar 

  • Kaplan IB, Lee L, Ripoll DR, Palukaitis P, Gildow F, Gray SM (2007) Point mutations in the potato leafroll virus major capsid protein alter virion stability and aphid transmission. J Gen Virol 88:1821–1830

    Article  CAS  PubMed  Google Scholar 

  • Kasschau KD, Carrington JC (2001) Long-distance movement and replication maintenance functions correlate with silencing suppression activity of potyviral HC-Pro. Virology 285:71–81

    Article  CAS  PubMed  Google Scholar 

  • Kasschau KD, Cronin S, Carrington JC (1997) Genome amplification and long-distance movement functions associated with the central domain of tobacco etch potyvirus helper component-proteinase. Virology 228:251–262

    Article  CAS  PubMed  Google Scholar 

  • Kawakami S, Watanabe Y, Beachy RN (2004) Tobacco mosaic virus infection spreads cell to cell as intact replication complexes. Proc Natl Acad Sci U S A 101:6291–6296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SH, Macfarlane S, Kalinina NO, Rakitina DV, Ryabov EV, Gillespie T, Haupt S, Brown JW, Taliansky M (2007a) Interaction of a plant virus-encoded protein with the major nucleolar protein fibrillarin is required for systemic virus infection. Proc Natl Acad Sci U S A 104:11115–11120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SH, Ryabov EV, Kalinina NO, Rakitina DV, Gillespie T, MacFarlane S, Haupt S, Brown JW, Taliansky M (2007b) Cajal bodies and the nucleolus are required for a plant virus systemic infection. EMBO J 26:2169–2179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnamurthy K, Heppler M, Mitra R, Blancaflor E, Payton M, Nelson RS, Verchot-Lubicz J (2003) The potato virus X TGBp3 protein associates with the ER network for virus cell-to-cell movement. Virology 309:135–151

    Google Scholar 

  • Laporte C, Vetter G, Loudes AM, Robinson DG, Hillmer S, Stussi-Garaud C, Ritzenthaler C (2003) Involvement of the secretory pathway and the cytoskeleton in intracellular targeting and tubule assembly of grapevine fanleaf virus movement protein in tobacco BY-2 cells. Plant Cell 15:2058–2075

    Google Scholar 

  • Lartey RT, Ghoshroy S, Citovsky V (1998) Identification of an Arabidopsis thaliana mutation (vsm1) that restricts systemic movement of tobamoviruses. Mol Plant-Microbe Interact 11:706–709

    Google Scholar 

  • Lee L, Palukaitis P, Gray SM (2002) Host-dependent requirement for the potato leafroll virus 17-kda protein in virus movement. Mol Plant-Microbe Interact 15:1086–1094

    Google Scholar 

  • Lee SC, Wu CH, Wang CW (2010) Traffic of a viral movement protein complex to the highly curved tubules of the cortical endoplasmic reticulum. Traffic 11:912–930

    Article  CAS  PubMed  Google Scholar 

  • Lee CC, Ho YN, Hu RH, Yen YT, Wang ZC, Lee YC, Hsu YH, Meng M (2011) The interaction between bamboo mosaic virus replication protein and coat protein is critical for virus movement in plant hosts. J Virol 85:12022–12031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lellis AD, Kasschau KD, Whitham SA, Carrington JC (2002) Loss-of-susceptibility mutants of Arabidopsis thaliana reveal an essential role for eIF(iso)4E during potyvirus infection. Curr Biol 12:1046–1051

    Google Scholar 

  • Lewandowski DJ, Adkins S (2005) The tubule-forming NSm protein from tomato spotted wilt virus complements cell-to-cell and long-distance movement of tobacco mosaic virus hybrids. Virology 342:26–37

    Google Scholar 

  • Li Y, Wu MY, Song HH, Hu X, Qiu BS (2005) Identification of a tobacco protein interacting with tomato mosaic virus coat protein and facilitating long-distance movement of virus. Arch Virol 150:1993–2008

    Article  CAS  PubMed  Google Scholar 

  • Li W, Lewandowski DJ, Hilf ME, Adkins S (2009) Identification of domains of the tomato spotted wilt virus NSm protein involved in tubule formation, movement and symptomatology. Virology 390:110–121

    Google Scholar 

  • Luna E, Pastor V, Robert J, Flors V, Mauch-Mani B, Ton J (2011) Callose deposition: a multifaceted plant defense response. Mol Plant-Microbe Interact 24:183–193

    Article  CAS  PubMed  Google Scholar 

  • Makarov VV, Rybakova EN, Efimov AV, Dobrov EN, Serebryakova MV, Solovyev AG, Yaminsky IV, Taliansky ME, Morozov SY, Kalinina NO (2009) Domain organization of the N-terminal portion of hordeivirus movement protein TGBp1. J Gen Virol 90:3022–3032

    Article  CAS  PubMed  Google Scholar 

  • Meshi T, Watanabe Y, Saito T, Sugimoto A, Maeda T, Okada Y (1987) Function of the 30 kd protein of tobacco mosaic virus: involvement in cell-to-cell movement and dispensability for replication. EMBO J 6:2557–2563

    CAS  PubMed  PubMed Central  Google Scholar 

  • Northcote DH, Davey R, Lay J (1989) Use of antisera to localize callose, xylan and arabinogalactan in the cell-plate, primary and secondary walls of plant cells. Planta 178:353–366

    Article  CAS  PubMed  Google Scholar 

  • Opalka N, Brugidou C, Bonneau C, Nicole M, Beachy RN, Yeager M, Fauquet C (1998) Movement of rice yellow mottle virus between xylem cells through pit membranes. Proc Natl Acad Sci U S A 95:3323–3328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padidam M, Beachy RN, Fauquet CM (1995) Tomato leaf curl geminivirus from India has a bipartite genome and coat protein is not essential for infectivity. J Gen Virol 76:25–35

    Article  CAS  PubMed  Google Scholar 

  • Pagny G, Paulstephenraj PS, Poque S, Sicard O, Cosson P, Eyquard JP, Caballero M, Chague A, Gourdon G, Negrel L, Candresse T, Mariette S, Decroocq V (2012) Family-based linkage and association mapping reveals novel genes affecting plum pox virus infection in Arabidopsis thaliana. New Phytol 196:873–886

    Google Scholar 

  • Park M-R, Seo J-K, Kim K-H (2013) Viral and nonviral elements in potexvirus replication and movement and in antiviral responses. Adv Virus Res 87:75–112

    Article  CAS  PubMed  Google Scholar 

  • Park M-R, Jeong RD, Kim K-H (2014) Understanding the intracellular trafficking and intercellular transport of potexviruses in their host plants. Front Plant Sci 5:60

    Article  PubMed  PubMed Central  Google Scholar 

  • Pereda S, Ehrenfeld N, Medina C, Delgado J, Arce-Johnson P (2000) Comparative analysis of TMV-Cg and TMV-U1 detection methods in infected Arabidopsis thaliana. J Virol Methods 90:135–142

    Article  CAS  PubMed  Google Scholar 

  • Puustinen P, Rajamaki ML, Ivanov KI, Valkonen JP, Makinen K (2002) Detection of the potyviral genome-linked protein VPg in virions and its phosphorylation by host kinases. J Virol 76:12703–12711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu F, Morris TJ (2002) Efficient infection of Nicotiana benthamiana by tomato bushy stunt virus is facilitated by the coat protein and maintained by p19 through suppression of gene silencing. Mol Plant-Microbe Interact 15:193–202

    Google Scholar 

  • Rajamaki ML, Valkonen JP (2002) Viral genome-linked protein (VPg) controls accumulation and phloem-loading of a potyvirus in inoculated potato leaves. Mol Plant-Microbe Interact 15:138–149

    Article  CAS  PubMed  Google Scholar 

  • Rajamaki ML, Valkonen JP (2003) Localization of a potyvirus and the viral genome-linked protein in wild potato leaves at an early stage of systemic infection. Mol Plant-Microbe Interact 16:25–34

    Article  CAS  PubMed  Google Scholar 

  • Roudet-Tavert G, Michon T, Walter J, Delaunay T, Redondo E, Le Gall O (2007) Central domain of a potyvirus VPg is involved in the interaction with the host translation initiation factor eIF4E and the viral protein HC-Pro. J Gen Virol 88:1029–1033

    Article  CAS  PubMed  Google Scholar 

  • Ryabov EV, Robinson DJ, Taliansky ME (1999) A plant virus-encoded protein facilitates long-distance movement of heterologous viral RNA. Proc Natl Acad Sci U S A 96:1212–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryabov EV, Robinson DJ, Taliansky M (2001) Umbravirus-encoded proteins both stabilize heterologous viral RNA and mediate its systemic movement in some plant species. Virology 288:391–400

    Article  CAS  PubMed  Google Scholar 

  • Salanki K, Kiss L, Gellert A, Balazs E (2011) Identification a coat protein region of cucumber mosaic virus (CMV) essential for long-distance movement in cucumber. Arch Virol 156:2279–2283

    Article  CAS  PubMed  Google Scholar 

  • Schaad MC, Jensen PE, Carrington JC (1997) Formation of plant RNA virus replication complexes on membranes: role of an endoplasmic reticulum-targeted viral protein. EMBO J 16:4049–4059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholthof HB, Scholthof KB, Kikkert M, Jackson AO (1995) Tomato bushy stunt virus spread is regulated by two nested genes that function in cell-to-cell movement and host-dependent systemic invasion. Virology 213:425–438

    Article  CAS  PubMed  Google Scholar 

  • Semashko MA, Gonzalez I, Shaw J, Leonova OG, Popenko VI, Taliansky ME, Canto T, Kalinina NO (2012a) The extreme N-terminal domain of a hordeivirus TGB1 movement protein mediates its localization to the nucleolus and interaction with fibrillarin. Biochimie 94:1180–1188

    Article  CAS  PubMed  Google Scholar 

  • Semashko MA, Rakitina DV, Gonzalez I, Canto T, Kalinina NO, Taliansky ME (2012b) Movement protein of hordeivirus interacts in vitro and in vivo with coilin, a major structural protein of Cajal bodies. Dokl Biochem Biophys 442:57–60

    Article  CAS  PubMed  Google Scholar 

  • Seo J-K, Vo Phan MS, Kang SH, Choi H-S, Kim K-H (2013) The charged residues in the surface-exposed C-terminus of the soybean mosaic virus coat protein are critical for cell-to-cell movement. Virology 446:95–101

    Google Scholar 

  • Seo J-K, Kwon S-J, Cho WK, Choi H-S, Kim K-H (2014) Type 2C protein phosphatase is a key regulator of antiviral extreme resistance limiting virus spread. Sci Rep 4:5905

    CAS  PubMed  Google Scholar 

  • Serrano C, Gonzalez-Cruz J, Jauregui F, Medina C, Mancilla P, Matus JT, Arce-Johnson P (2008) Genetic and histological studies on the delayed systemic movement of tobacco mosaic virus in Arabidopsis thaliana. BMC Genet 9:59

    Google Scholar 

  • Shukla DD, Ward CW (1989) Structure of potyvirus coat proteins and its application in the taxonomy of the potyvirus group. Adv Virus Res 36:273–314

    Article  CAS  PubMed  Google Scholar 

  • Simon-Buela L, Garcia-Arenal F (1999) Virus particles of cucumber green mottle mosaic tobamovirus move systemically in the phloem of infected cucumber plants. Mol Plant-Microbe Interact 12:112–118

    Article  CAS  PubMed  Google Scholar 

  • Solovyev AG, Savenkov EI (2014) Factors involved in the systemic transport of plant RNA viruses: the emerging role of the nucleus. J Exp Bot 65:1689–1697

    Article  CAS  PubMed  Google Scholar 

  • Solovyev AG, Kalinina NO, Morozov SY (2012) Recent advances in research of plant virus movement mediated by triple gene block. Front Plant Sci 3:276

    Article  PubMed  PubMed Central  Google Scholar 

  • Takeda A, Kaido M, Okuno T, Mise K (2004) The C terminus of the movement protein of brome mosaic virus controls the requirement for coat protein in cell-to-cell movement and plays a role in long-distance movement. J Gen Virol 85:1751–1761

    Google Scholar 

  • Taliansky M, Roberts IM, Kalinina N, Ryabov EV, Raj SK, Robinson DJ, Oparka KJ (2003) An umbraviral protein, involved in long-distance RNA movement, binds viral RNA and forms unique, protective ribonucleoprotein complexes. J Virol 77:3031–3040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatineni S, French R (2014) The C-terminus of wheat streak mosaic virus coat protein is involved in differential infection of wheat and maize through host-specific long-distance transport. Mol Plant-Microbe Interact 27:150–162

    Google Scholar 

  • Tatineni S, Van Winkle DH, French R (2011) The N-terminal region of wheat streak mosaic virus coat protein is a host- and strain-specific long-distance transport factor. J Virol 85:1718–1731

    Article  CAS  PubMed  Google Scholar 

  • Tatineni S, Kovacs F, French R (2014) Wheat streak mosaic virus infects systemically despite extensive coat protein deletions: identification of virion assembly and cell-to-cell movement determinants. J Virol 88:1366–1380

    Article  PubMed  PubMed Central  Google Scholar 

  • Tilsner J, Linnik O, Louveaux M, Roberts IM, Chapman SN, Oparka KJ (2013) Replication and trafficking of a plant virus are coupled at the entrances of plasmodesmata. J Cell Biol 201:981–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torrance L, Wright KM, Crutzen F, Cowan GH, Lukhovitskaya NI, Bragard C, Savenkov EI (2011) Unusual features of pomoviral RNA movement. Front Microbiol 2:259

    Article  PubMed  PubMed Central  Google Scholar 

  • Ueki S, Citovsky V (2002) The systemic movement of a tobamovirus is inhibited by a cadmium-ion-induced glycine-rich protein. Nat Cell Biol 4:478–486

    CAS  PubMed  Google Scholar 

  • Ueki S, Citovsky V (2011) To gate, or not to gate: regulatory mechanisms for intercellular protein transport and virus movement in plants. Mol Plant 4:782–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urcuqui-Inchima S, Haenni AL, Bernardi F (2001) Potyvirus proteins: a wealth of functions. Virus Res 74:157–175

    Article  CAS  PubMed  Google Scholar 

  • Vaewhongs AA, Lommel SA (1995) Virion formation is required for the long-distance movement of red clover necrotic mosaic virus in movement protein transgenic plants. Virology 212:607–613

    Article  CAS  PubMed  Google Scholar 

  • Verchot-Lubicz J, Torrance L, Solovyev AG, Morozov SY, Jackson AO, Gilmer D (2010) Varied movement strategies employed by triple gene block-encoding viruses. Mol Plant-Microbe Interact 23:1231–1247

    Article  CAS  PubMed  Google Scholar 

  • Vijayapalani P, Maeshima M, Nagasaki-Takekuchi N, Miller WA (2012) Interaction of the trans-frame potyvirus protein P3N-PIPO with host protein PCaP1 facilitates potyvirus movement. PLoS Pathog 8:e1002639

    Google Scholar 

  • Waigmann E, Ueki S, Trutnyeva K, Citovsky V (2004) The ins and outs of nondestructive cell-to-cell and systemic movement of plant viruses. Crit Rev Plant Sci 23:195–250

    Article  CAS  Google Scholar 

  • Wan J, Cabanillas DG, Zheng H, Laliberte JF (2015) Turnip mosaic virus moves systemically through both phloem and xylem as membrane-associated complexes. Plant Physiol 167:1374–1388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang HL, Wang Y, Giesman-Cookmeyer D, Lommel SA, Lucas WJ (1998) Mutations in viral movement protein alter systemic infection and identify an intercellular barrier to entry into the phloem long-distance transport system. Virology 245:75–89

    Article  CAS  PubMed  Google Scholar 

  • Wei T, Zhang C, Hong J, Xiong R, Kasschau KD, Zhou X, Carrington JC, Wang A (2010) Formation of complexes at plasmodesmata for potyvirus intercellular movement is mediated by the viral protein P3N-PIPO. PLoS Pathog 6:e1000962

    Google Scholar 

  • Whitham SA, Anderberg RJ, Chisholm ST, Carrington JC (2000) Arabidopsis RTM2 gene is necessary for specific restriction of tobacco etch virus and encodes an unusual small heat shock-like protein. Plant Cell 12:569–582

    Google Scholar 

  • Wolf S, Deom CM, Beachy RN, Lucas WJ (1989) Movement protein of tobacco mosaic virus modifies plasmodesmatal size exclusion limit. Science 246:377–379

    Article  CAS  PubMed  Google Scholar 

  • Wright KM, Cowan GH, Lukhovitskaya NI, Tilsner J, Roberts AG, Savenkov EI, Torrance L (2010) The N-terminal domain of PMTV TGB1 movement protein is required for nucleolar localization, microtubule association, and long-distance movement. Mol Plant-Microbe Interact 23:1486–1497

    Article  CAS  PubMed  Google Scholar 

  • Wu CH, Lee SC, Wang CW (2011) Viral protein targeting to the cortical endoplasmic reticulum is required for cell-cell spreading in plants. J Cell Biol 193:521–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong Z, Kim KH, Giesman-Cookmeyer D, Lommel SA (1993) The roles of the red clover necrotic mosaic virus capsid and cell-to-cell movement proteins in systemic infection. Virology 192:27–32

    Article  CAS  PubMed  Google Scholar 

  • Zhao JP, Liu Q, Zhang HL, Jia Q, Hong YG, Liu YL (2013) The rubisco small subunit is involved in tobamovirus movement and Tm-22-mediated extreme resistance. Plant Physiol 161:374–383

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the Agenda Programs (PJ01130602 & PJ00922904) funded by the Rural Development Administration and the Vegetable Breeding Research Center (No. 710001-07-05) through the Agriculture Research Center program from the Ministry for Food, Agriculture, Forestry and Fisheries, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kook-Hyung Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Seo, JK., Kim, KH. (2016). Long-Distance Movement of Viruses in Plants. In: Wang, A., Zhou, X. (eds) Current Research Topics in Plant Virology. Springer, Cham. https://doi.org/10.1007/978-3-319-32919-2_6

Download citation

Publish with us

Policies and ethics