Advertisement

Numerical Local Irreducible Decomposition

  • Daniel A. BrakeEmail author
  • Jonathan D. Hauenstein
  • Andrew J. Sommese
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9582)

Abstract

Globally, the solution set of a system of polynomial equations with complex coefficients can be decomposed into irreducible components. Using numerical algebraic geometry, each irreducible component is represented using a witness set thereby yielding a numerical irreducible decomposition of the solution set. Locally, the irreducible decomposition can be refined to produce a local irreducible decomposition. We define local witness sets and describe a numerical algebraic geometric approach for computing a numerical local irreducible decomposition for polynomial systems. Several examples are presented.

Keywords

Numerical algebraic geometry Numerical irreducible decomposition Local irreducible decomposition Numerical local irreducible decomposition 

References

  1. 1.
    Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Bertini: Software for numerical algebraic geometry. http://bertini.nd.edu
  2. 2.
    Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Numerically Solving Polynomial Systems with Bertini. Software, Environments, and Tools, vol. 25. Society for Industrial and Applied Mathematics, Philadelphia (2013)zbMATHGoogle Scholar
  3. 3.
    Dayton, B., Zeng, Z.: Computing the multiplicity structure in solving polynomial systems. In: Proceedings of ISSAC, pp. 166–123. ACM, New York (2005)Google Scholar
  4. 4.
    Fischer, G.: Complex Analytic Geometry. Lecture Notes in Mathematics, vol. 538. Springer, Berlin-New York (1976)zbMATHGoogle Scholar
  5. 5.
    Gunning, R.C.: Introduction to Holomorphic Functions of Several Variables. Vol. II: Local Theory. Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA (1990)Google Scholar
  6. 6.
    Gunning, R.C.: Lectures on Complex Analytic Varieties: The Local Parametrization Theorem. Mathematical Notes Princeton University Press, Princeton; University of Tokyo Press, Tokyo (1970)Google Scholar
  7. 7.
    Hauenstein, J.D.: Numerically computing real points on algebraic sets. Acta Appl. Math. 125(1), 105–119 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Lu, Y., Bates, D.J., Sommese, A.J., Wampler, C.W.: Finding all real points of a complex curve. Contemp. Math. 448, 183–205 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Macaulay, F.S.: The Algebraic Theory of Modular Systems. Cambridge University Press, Cambridge (1916)zbMATHGoogle Scholar
  10. 10.
    Wampler, C.W., Hauenstein, J.D., Sommese, A.J.: Mechanism mobility and a local dimension test. Mech. Mach. Theory 46(9), 1193–1206 (2011)CrossRefzbMATHGoogle Scholar
  11. 11.
    Wampler, C., Larson, B., Edrman, A.: A new mobility formula for spatial mechanisms. In: Proceedings of DETC/Mechanisms and Robotics Conference, Las Vegas, NV (CDROM), 4–7 September 2007Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Daniel A. Brake
    • 1
    Email author
  • Jonathan D. Hauenstein
    • 1
  • Andrew J. Sommese
    • 1
  1. 1.Department of Applied and Computational Mathematics and StatisticsUniversity of Notre DameNotre DameUSA

Personalised recommendations