Average-Case Bit-Complexity Theory of Real Functions

  • Matthias Schröder
  • Florian Steinberg
  • Martin Ziegler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9582)

Abstract

We introduce, and initiate the study of, average-case bit-complexity theory over the reals: Like in the discrete case a first, naïve notion of polynomial average runtime turns out to lack robustness and is thus refined. Standard examples of explicit continuous functions with increasingly high worst-case complexity are shown to be in fact easy in the mean; while a further example is constructed with both worst and average complexity exponential: for topological/metric reasons, i.e., oracles do not help. The notions are then generalized from the reals to represented spaces; and, in the real case, related to randomized computation.

References

  1. [BHG13]
    Brattka, V., Hölzl, R., Gherardi, G.: Probabilistic computability and choice. Inf. Comput. 242(C), 249–286 (2015)MathSciNetCrossRefMATHGoogle Scholar
  2. [Boss08]
    Bosserhoff, V.: Notions of probabilistic computability on represented spaces. J. Univ. Comput. Sci. 146(6), 956–995 (2008)MathSciNetMATHGoogle Scholar
  3. [BoTr06]
    Bogdanov, A., Trevisan, L.: Average-case complexity. Found. Trends Theor. Comput. Sci. 2(1), 1–106 (2006). arXiv:cs/0606037
  4. [COKJ10]
    Coja-Oghlan, A., Krivelevich, M., Vilenchik, D.: Why almost all \(k\)-colorable graphs are easy to color. Theor. Comput. Syst. 46(3), 523–565 (2010)MathSciNetCrossRefMATHGoogle Scholar
  5. [Gold97]
    Goldreich, O.: Notes on Levin’s theory of average-case complexity. In: Goldreich, O. (ed.) Studies in Complexity and Cryptography. LNCS, vol. 6650, pp. 233–247. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. [HMRR98]
    Habib, M., McDiarmid, C., Ramirez-Alfonsin, J., Reed, B.: Probabilistic Methods for Algorithmic Discrete Mathematics. Springer, Heidelberg (1998)CrossRefMATHGoogle Scholar
  7. [KMRZ15]
    Kawamura, A., Müller, N., Rösnick, C., Ziegler, M.: Computational benefit of smoothness: parameterized bit-complexity of numerical operators on analytic functions and Gevrey’s hierarchy. J. Complex. 31(5), 689–714 (2015)CrossRefMATHGoogle Scholar
  8. [KoFr82]
    Ko, K.-I., Friedman, H.: Computational complexity of real functions. Theor. Comput. Sci. 20, 323–352 (1982)MathSciNetCrossRefMATHGoogle Scholar
  9. [Ko91]
    Ko, K.-I.: Computational Complexity of Real Functions. Birkhäuser, Boston (1991)CrossRefMATHGoogle Scholar
  10. [KORZ14]
    Kawamura, A., Ota, H., Rösnick, C., Ziegler, M.: Computational complexity of smooth differential equations. Log. Methods Comput. Sci. 10, 1 (2014)MathSciNetCrossRefMATHGoogle Scholar
  11. [LiVi97]
    Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applications. Springer, Heidelberg (1997)CrossRefMATHGoogle Scholar
  12. [Ritt00]
    Ritter, K. (ed.): Average-Case Analysis of Numerical Problems. Lecture Notes in Mathematics, vol. 1733. Springer, Heidelberg (2000)MATHGoogle Scholar
  13. [Schr04]
    Schröder, M.: Spaces allowing type-2 complexity theory revisited. Math. Log. Q. 50, 443–459 (2004)MathSciNetCrossRefMATHGoogle Scholar
  14. [ScSi06]
    Schröder, M., Simpson, A.: Representing probability measures using probabilistic processes. J. Complex. 22, 768–782 (2006)MathSciNetCrossRefMATHGoogle Scholar
  15. [Weih00]
    Weihrauch, K.: Computable Analysis. Springer, Heidelberg (2000)CrossRefMATHGoogle Scholar
  16. [Weih03]
    Weihrauch, K.: Computational complexity on computable metric spaces. Math. Log. Q. 49(1), 3–21 (2003)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Matthias Schröder
    • 1
  • Florian Steinberg
    • 1
  • Martin Ziegler
    • 1
    • 2
  1. 1.TU DarmstadtDarmstadtGermany
  2. 2.KAISTDaejeonSouth Korea

Personalised recommendations