Average-Case Bit-Complexity Theory of Real Functions
Conference paper
First Online:
Abstract
We introduce, and initiate the study of, average-case bit-complexity theory over the reals: Like in the discrete case a first, naïve notion of polynomial average runtime turns out to lack robustness and is thus refined. Standard examples of explicit continuous functions with increasingly high worst-case complexity are shown to be in fact easy in the mean; while a further example is constructed with both worst and average complexity exponential: for topological/metric reasons, i.e., oracles do not help. The notions are then generalized from the reals to represented spaces; and, in the real case, related to randomized computation.
References
- [BHG13]Brattka, V., Hölzl, R., Gherardi, G.: Probabilistic computability and choice. Inf. Comput. 242(C), 249–286 (2015)MathSciNetCrossRefMATHGoogle Scholar
- [Boss08]Bosserhoff, V.: Notions of probabilistic computability on represented spaces. J. Univ. Comput. Sci. 146(6), 956–995 (2008)MathSciNetMATHGoogle Scholar
- [BoTr06]Bogdanov, A., Trevisan, L.: Average-case complexity. Found. Trends Theor. Comput. Sci. 2(1), 1–106 (2006). arXiv:cs/0606037
- [COKJ10]Coja-Oghlan, A., Krivelevich, M., Vilenchik, D.: Why almost all \(k\)-colorable graphs are easy to color. Theor. Comput. Syst. 46(3), 523–565 (2010)MathSciNetCrossRefMATHGoogle Scholar
- [Gold97]Goldreich, O.: Notes on Levin’s theory of average-case complexity. In: Goldreich, O. (ed.) Studies in Complexity and Cryptography. LNCS, vol. 6650, pp. 233–247. Springer, Heidelberg (2011)CrossRefGoogle Scholar
- [HMRR98]Habib, M., McDiarmid, C., Ramirez-Alfonsin, J., Reed, B.: Probabilistic Methods for Algorithmic Discrete Mathematics. Springer, Heidelberg (1998)CrossRefMATHGoogle Scholar
- [KMRZ15]Kawamura, A., Müller, N., Rösnick, C., Ziegler, M.: Computational benefit of smoothness: parameterized bit-complexity of numerical operators on analytic functions and Gevrey’s hierarchy. J. Complex. 31(5), 689–714 (2015)CrossRefMATHGoogle Scholar
- [KoFr82]Ko, K.-I., Friedman, H.: Computational complexity of real functions. Theor. Comput. Sci. 20, 323–352 (1982)MathSciNetCrossRefMATHGoogle Scholar
- [Ko91]Ko, K.-I.: Computational Complexity of Real Functions. Birkhäuser, Boston (1991)CrossRefMATHGoogle Scholar
- [KORZ14]Kawamura, A., Ota, H., Rösnick, C., Ziegler, M.: Computational complexity of smooth differential equations. Log. Methods Comput. Sci. 10, 1 (2014)MathSciNetCrossRefMATHGoogle Scholar
- [LiVi97]Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applications. Springer, Heidelberg (1997)CrossRefMATHGoogle Scholar
- [Ritt00]Ritter, K. (ed.): Average-Case Analysis of Numerical Problems. Lecture Notes in Mathematics, vol. 1733. Springer, Heidelberg (2000)MATHGoogle Scholar
- [Schr04]Schröder, M.: Spaces allowing type-2 complexity theory revisited. Math. Log. Q. 50, 443–459 (2004)MathSciNetCrossRefMATHGoogle Scholar
- [ScSi06]Schröder, M., Simpson, A.: Representing probability measures using probabilistic processes. J. Complex. 22, 768–782 (2006)MathSciNetCrossRefMATHGoogle Scholar
- [Weih00]Weihrauch, K.: Computable Analysis. Springer, Heidelberg (2000)CrossRefMATHGoogle Scholar
- [Weih03]Weihrauch, K.: Computational complexity on computable metric spaces. Math. Log. Q. 49(1), 3–21 (2003)MathSciNetCrossRefMATHGoogle Scholar
Copyright information
© Springer International Publishing Switzerland 2016