Advertisement

Another Classroom Example of Robustness Problems in Planar Convex Hull Computation

  • Marc MörigEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9582)

Abstract

Algorithms in computational geometry are designed under the assumption of exact real arithmetic. Indiscriminately replacing exact real arithmetic by hardware floating-point arithmetic almost inevitably leads to robustness problems. Kettner et al. provide examples where rounding errors let such straightforward implementations of incremental convex hull computation crash, loop forever, or silently compute garbage. We complement their work by providing problematic examples for another planar convex hull algorithm.

Keywords

Implementation Numerical robustness problems Floating-point geometry 

References

  1. 1.
    de Berg, M., Cheong, O., van Krefeld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, 3rd revised edn. Springer, Heidelberg (2008)Google Scholar
  2. 2.
    ANSI, IEEE Standard 754–1985 : IEEE Standard for Binary Floating-Point Arithmetic (1985). Reprinted in SIGPLAN Notices 22(2), 9–25 (1987)Google Scholar
  3. 3.
    Kettner, L., Mehlhorn, K., Pion, S., Schirra, S., Yap, C.K.: Classroom examples of robustness problems in geometric computation. Comput. Geom. Theor. Appl. 40(1), 61–78 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Mehlhorn, K., Näher, S.: LEDA: A Platform for Combinatorial and Geometric Computing. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  5. 5.
    Mörig, M.: Companion Pages to Another Classroom Example of Robustness Problems in Planar Convex Hull Computation. http://wwwisg.cs.uni-magdeburg.de/ag/ClassroomExample/
  6. 6.
    Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction, 1st edn. Springer, Heidelberg (1985)CrossRefzbMATHGoogle Scholar
  7. 7.
    Schirra, S.: Robustness and precision issues in geometric computation. In: Sack, J.R., Urrutia, J. (eds.) Handbook of Computational Geometry, chap. 14, pp. 597–632. Elsevier, Amsterdam, January 2000Google Scholar
  8. 8.
    Shewchuk, J.R.: Adaptive precision floating-point arithmetic and fast robust geometric predicates. Discrete Comput. Geom. 18(3), 305–363 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Yap, C.K.: Robust geometric computation. In: Handbook of Discrete and Computational Geometry, chap. 41, pp. 927–952, 2nd edn. CRC (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Faculty of Computer Science, Department of Simulation and GraphicsOtto-von-Guericke University of MagdeburgMagdeburgGermany

Personalised recommendations