Simple Differential Field Extensions and Effective Bounds

  • James FreitagEmail author
  • Wei Li
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9582)


We establish several variations on Kolchin’s differential primitive element theorem, and conjecture a generalization of Pogudin’s primitive element theorem. These results are then applied to improve the bounds for the effective Differential Lüroth theorem.


Differential chow forms Primitive element theorem Model theory Differential Lüroth theorem 


  1. 1.
    Bouscaren, E.: Proof of the Geometric Mordell-Lang Conjecture. In: Hrushovski’s, E. (ed.) Model Theory and Algebraic Geometry. Lecture Notes in Mathematics, vol. 1696, pp. 177–196. Springer, Heidelberg (1998)Google Scholar
  2. 2.
    Brestovski, M.: Algebraic independence of solutions of differential equations of the second order. Pac. J. Math. 140(1), 1–19 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    D’Alfonso, L., Jeronimo, G., Solernó, P.: Effective differential lüroth’s theorem. J. Algebra 406, 1–19 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Freitag, J., Scanlon, T.: Strong minimality and the j-function. J. Eur. Math. Soc. (2015). AcceptedGoogle Scholar
  5. 5.
    Gao, X.-S., Li, W., Yuan, C.-M.: Intersection theory in differential algebraic geometry: generic intersections and the differential chow form. Trans. Am. Math. Soc. 365(9), 4575–4632 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Gao, X.-S., Tao, X.: Lüroth theorem in differential fields. J. Syst. Sci. Complex. 15(4), 376–383 (2002)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Kolchin, E.R.: Extensions of differential fields, I. Ann. Math. 43, 724–729 (1942)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kolchin, E.R.: Extensions of differential fields, II. Ann. Math. 45(2), 358–361 (1944)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kolchin, E.R.: Extensions of differential fields, III. Bull. Am. Math. Soc. 53(4), 397–401 (1947)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Li, W., Li, Y.: Computation of differential chow forms for ordinary prime differential ideals. Adv. Appl. Math. 72, 77–112 (2015). doi: 10.1016/j.aam.2015.09.004 MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Marker, D., Messmer, M., Pillay, A.: Model Theory of Fields. A.K. Peters/CRC Press (2005)Google Scholar
  12. 12.
    Gleb, A.: The primitive element theorem for differential fields with zero derivation on the ground field. J. Pure Appl. Algebra 219(9), 4035–4041 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Pong, W.Y.: On a result of rosenlicht. Commun. Algebra 30(12), 5933–5939 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ritt, J.F.: Differential Equations from the Algebraic Standpoint, vol. 14. American Mathematical Soc., New York (1932)zbMATHGoogle Scholar
  15. 15.
    Ritt, J.F.: Differential Algebra. Dover Publications, New York (1950)zbMATHGoogle Scholar
  16. 16.
    Rosenlicht, M.: The nonminimality of the differential closure. Pac. J. Math. 52, 529–537 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Seidenberg, A.: Some basic theorems in differential algebra (characteristic \(p\), arbitrary). Trans. Amer. Math. Soc. 73, 174–190 (1952)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Seidenberg, A.: Abstract differential algebra and the analytic case. Proc. Am. Math. Soc. 9(1), 159–164 (1958)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.UCLA Mathematics DepartmentLos AngelesUSA
  2. 2.Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijingChina

Personalised recommendations