Explicit Error Bound for Modified Numerical Iterated Integration by Means of Sinc Methods

  • Tomoaki OkayamaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9582)


This paper reinforces numerical iterated integration developed by Muhammad–Mori in the following two points: (1) the approximation formula is modified so that it can achieve a better convergence rate in more general cases, and (2) an explicit error bound is given in a computable form for the modified formula. The formula works quite efficiently, especially if the integrand is of a product type. Numerical examples that confirm it are also presented.


Sinc quadrature Sinc indefinite integration Repeated integral Verified numerical integration Double-exponential transformation 


  1. 1.
    Eiermann, M.C.: Automatic, guaranteed integration of analytic functions. BIT 29, 270–282 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Hill, M., Robinson, I.: d2lri: a nonadaptive algorithm for two-dimensional cubature. J. Comput. Appl. Math. 112, 121–145 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Iri, M., Moriguti, S., Takasawa, Y.: On a certain quadrature formula. RIMS Kōkyūroku, Kyoto Univ. 91, 82–118 (1970). (in Japanese)zbMATHGoogle Scholar
  4. 4.
    Iri, M., Moriguti, S., Takasawa, Y.: On a certain quadrature formula. J. Comput. Appl. Math. 17, 3–20 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Mori, M., Sugihara, M.: The double-exponential transformation in numerical analysis. J. Comput. Appl. Math. 127, 287–296 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Muhammad, M., Mori, M.: Double exponential formulas for numerical indefinite integration. J. Comput. Appl. Math. 161, 431–448 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Muhammad, M., Mori, M.: Numerical iterated integration based on the double exponential transformation. Jpn. J. Indust. Appl. Math. 22, 77–86 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Okayama, T., Matsuo, T., Sugihara, M.: Approximate formulae for fractional derivatives by means of Sinc methods. J. Concr. Appl. Math. 8, 470–488 (2010)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Okayama, T., Matsuo, T., Sugihara, M.: Sinc-collocation methods for weakly singular Fredholm integral equations of the second kind. J. Comput. Appl. Math. 234, 1211–1227 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Okayama, T., Matsuo, T., Sugihara, M.: Error estimates with explicit constants for Sinc approximation, Sinc quadrature and Sinc indefinite integration. Numer. Math. 124, 361–394 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Petras, K.: Principles of verified numerical integration. J. Comput. Appl. Math. 199, 317–328 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Robinson, I., de Doncker, E.: Algorithm 45. Automatic computation of improper integrals over a bounded or unbounded planar region. Computing 27, 253–284 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Robinson, I., Hill, M.: Algorithm 816: r2d2lri: an algorithm for automatic two-dimensional cubature. ACM Trans. Math. Softw. 28, 75–100 (2002)CrossRefzbMATHGoogle Scholar
  14. 14.
    Roose, D., de Doncker, E.: Automatic integration over a sphere. J. Comput. Appl. Math. 7, 203–224 (1981)CrossRefzbMATHGoogle Scholar
  15. 15.
    Schwartz, C.: Numerical integration of analytic functions. J. Comput. Phys. 4, 19–29 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Sidi, A.: A new variable transformation for numerical integration. In: Brass, H., Hämmerlin, G. (eds.) Numerical Integration IV. International Series of Numerical Mathematics, vol. 112, pp. 359–373. Birkhäuser Verlag, Basel (1993)CrossRefGoogle Scholar
  17. 17.
    Sidi, A.: Extension of a class of periodizing variable transformations for numerical integration. Math. Comput. 75, 327–343 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Stenger, F.: Numerical Methods Based on Sinc and Analytic Functions. Springer, New York (1993)CrossRefzbMATHGoogle Scholar
  19. 19.
    Stenger, F.: Summary of Sinc numerical methods. J. Comput. Appl. Math. 121, 379–420 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Takahasi, H., Mori, M.: Double exponential formulas for numerical integration. Publ. RIMS, Kyoto Univ. 9, 721–741 (1974)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Hiroshima City UniversityAsaminami-kuJapan

Personalised recommendations