Implementing Cryptographic Pairings on Accumulator Based Smart Card Architectures

  • Peter GüntherEmail author
  • Volker Krummel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9582)


In this paper, we show how bilinear pairings can be implemented on modern smart card architectures. We do this by providing a memory-efficient implementation of the eta pairing on accumulator based cryptographic coprocessors. We provide timing results for different key-sizes on a state of the art smart card, the Infineon SLE 78. On one hand, our results show that pairings can efficiently be computed on smart cards. On the other hand, our results identify bottlenecks that have to be considered for future smart card designs.


Smart Card Security Level Discrete Logarithm Internal Memory Elliptic Curve Cryptography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Barbulescu, R., Gaudry, P., Joux, A., Thomé, E.: A heuristic quasi-polynomial algorithm for discrete logarithm in finite fields of small characteristic. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 1–16. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  2. 2.
    Barreto, P.S.L.M., Galbraith, S.D., O’Eigeartaigh, C., Scott, M.: Efficient pairing computation on supersingular Abelian varieties. Des. Codes Crypt. 42(3), 239–271 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bertoni, G., Breveglieri, L., Chen, L., Fragneto, P., Harrison, K.A., Pelosi, G.: A pairing SW implementation for Smart-Cards. J. Syst. Softw. 81(7), 1240–1247 (2008)CrossRefGoogle Scholar
  4. 4.
    Beuchat, J.L., Brisebarre, N., Detrey, J., Okamoto, E., Rodríguez-Henríquez, F.: A Comparison between hardware accelerators for the modified tate pairing over F2m and F3m. IACR Cryptology ePrint Archive 2008, 115 (2008).
  5. 5.
    Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves. J. Cryptology 23, 224–280 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete Appl. Math. 156(16), 3113–3121 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Infineon Technologies AG: Product Brief SLE 78 (PB_SLE78CXxxxP.pdf), January 2014Google Scholar
  9. 9.
    Joye, M., Neven, G. (eds.): Identity-Based Cryptography, Cryptology and Information Security, vol. 2. IOS Press, Amsterdam (2009)Google Scholar
  10. 10.
    Miller, V.S.: The Weil pairing, and its efficient calculation. J. Cryptology 17(4), 235–261 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Oliveira, L.B., Aranha, D.F., Gouvêa, C.P.L., Scott, M., Câmara, D.F., López, J., Dahab, R.: TinyPBC: pairings for authenticated identity-based non-interactive key distribution in sensor networks. Comput. Commun. 34(3), 485–493 (2011)CrossRefGoogle Scholar
  12. 12.
    Scott, M., Costigan, N., Abdulwahab, W.: Implementing cryptographic pairings on smartcards. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 134–147. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.University of PaderbornPaderbornGermany
  2. 2.Wincor Nixdorf International GmbHPaderbornGermany

Personalised recommendations