Advertisement

Numerically Testing Generically Reduced Projective Schemes for the Arithmetic Gorenstein Property

  • Noah S. DaleoEmail author
  • Jonathan D. Hauenstein
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9582)

Abstract

Let \(X\subset {\mathbb P}^n\) be a generically reduced projective scheme. A fundamental goal in computational algebraic geometry is to compute information about X even when defining equations for X are not known. We use numerical algebraic geometry to develop a test for deciding if X is arithmetically Gorenstein and apply it to three secant varieties.

Notes

Acknowledgments

The authors would like to thank Luke Oeding for helpful discussions. Both authors were supported in part by DARPA Young Faculty Award (YFA) and NSF grant DMS-1262428. JDH was also supported by Sloan Research Fellowship and NSF ACI-1460032.

References

  1. 1.
    Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Bertini: Software for numerical algebraic geometry. http://bertini.nd.edu
  2. 2.
    Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Numerically solving polynomial systems with Bertini. Software, Environments, and Tools, vol. 25. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2013)Google Scholar
  3. 3.
    Daleo, N.S.: Algorithms and applications in numerical elimination theory. Ph.D. Dissertation. North Carolina State University (2015)Google Scholar
  4. 4.
    Daleo, N.S., Hauenstein, J.D.: Numerically deciding the arithmetically Cohen-Macaulayness of a projective scheme. J. Symb. Comp. 72, 128–146 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Davis, E.D., Geramita, A.V., Orecchia, F.: Gorenstein algebras and the Cayley-Bacharach theorem. Proc. Am. Math. Soc. 93(4), 593–597 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Geramita, A., Migliore, J.: Reduced Gorenstein codimension three subschemes of projective space. Proc. Am. Math. Soc. 125(4), 943–950 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Griffin, Z.A., Hauenstein, J.D., Peterson, C., Sommese, A.J.: Numerical computation of the Hilbert function and regularity of a zero dimensional scheme. In: Springer Proceedings in Mathematics and Statistics, vol. 76, pp. 235–250. Springer, New York (2014)Google Scholar
  8. 8.
    Hartshorne, R., Sabadini, I., Schlesinger, E.: Codimension \(3\) arithmetically Gorenstein subschemes of projective \(n\)-space. Annales de l’institut Fourier 58, 2037–2073 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Michalek, M., Oeding, L., Zwiernik, P.: Secant cumulants and toric geometry. Int. Math. Res. Notices 2015(12), 4019–4063 (2015)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Migliore, J., Peterson, C.: A construction of codimension three arithmetically Gorenstein subschemes of projective space. Trans. Am. Math. Soc. 349(9), 3803–3821 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Migliore, J.: Introduction to Liaison Theory and Deficiency Modules. Birkhäuser, Boston (1998)CrossRefzbMATHGoogle Scholar
  12. 12.
    Oeding, L., Sam, S.V.: Equations for the fifth secant variety of Segre products of projective spaces (2015). arxiv:1502.00203
  13. 13.
    Stanley, R.P.: Hilbert functions of graded algebras. Adv. Math. 28(1), 57–83 (1978)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of MathematicsWorcester State UniversityWorcesterUSA
  2. 2.Department of Applied and Computational Mathematics and StatisticsUniversity of Notre DameNotre DameUSA

Personalised recommendations