On a One-Equation Turbulent Model with Feedbacks

Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 164)

Abstract

A one-equation turbulent model is derived in this work on the basis of the approach used for the k-epsilon model. The novelty of the model consists in the consideration of a general feedback forces field in the momentum equation and a rather general turbulent dissipation function in the equation for the turbulent kinetic energy. For the steady-state associated boundary value problem, we prove the uniqueness of weak solutions under monotonous conditions on the feedbacks and smallness conditions on the solutions to the problem. We also discuss the existence of weak solutions and issues related with the higher integrability of the solutions gradients.

Keywords

Turbulence k-epsilon model Feedback forces Uniqueness 

Mathematics Subject Classification (2010):

76F60 93A30 35Q35 76D03 

References

  1. 1.
    Antontsev, S., Díaz, J.I., de Oliveira, H.B.: Stopping a viscous fluid by a feedback dissipative field: I. The stationary Stokes problem. J. Math. Fluid Mech. 6, 439–461 (2004)CrossRefMATHGoogle Scholar
  2. 2.
    Antontsev, S., Díaz, J.I., de Oliveira, H.B.: Stopping a viscous fluid by a feedback dissipative field: II. The stationary Navier–Stokes problem. Rend. Mat. Acc. Lincei s. 9 15, 257–270 (2004)MATHGoogle Scholar
  3. 3.
    Boccardo, L., Gallouët, T.: Strongly nonlinear elliptic equations having natural growth terms and L 1 data. Nonlinear Anal. Theory Methods Appl. 19, 572–579 (1992)MathSciNetMATHGoogle Scholar
  4. 4.
    Chacón-Rebollo, T., Lewandowski, R.: Mathematical and Numerical Foundations of Turbulence Models and Applications. Springer, New York (2014).CrossRefMATHGoogle Scholar
  5. 5.
    de Lemos, M. S.: Turbulence in Porous Media - Modelling and Applications. Elsevier, London (2012)Google Scholar
  6. 6.
    de Oliveira, H.B., Paiva, A.: Well-posedness of a stationary turbulent k–epsilon model with applications in porous media. Submitted.Google Scholar
  7. 7.
    de Oliveira, H.B., Paiva, A.: Existence for a one-equation turbulence k−epsilon model with strong nonlinearities. Submitted.Google Scholar
  8. 8.
    Druet, P.-E., Naumann, J., Wolf, J.: A Meyer’s type estimate for weak solutions to a generalized stationary Navier–Stokes system. Humboldt-Universität, Berlin. Preprint 2008-6 (2008)Google Scholar
  9. 9.
    Kenjeres, S., Hanjalic, K.: On the implementation of effects of Lorentz force in turbulence closure models. Int. J. Heat Fluid 21, 329–337 (2000)CrossRefMATHGoogle Scholar
  10. 10.
    Kolmogorov, A.N.: In: Tikhomirov, V. (ed.) Selected Works of A. N. Kolmogorov, vol. 1. Kluwer Academic, Dordrecht (1991)Google Scholar
  11. 11.
    Launder, B., Spalding, D.: Mathematical Models of Turbulence. Academic, London (1972)MATHGoogle Scholar
  12. 12.
    Mohammadi, B., Pironneau, O.: Analysis of the K-Epsilon Turbulence Model. Wiley-Masson, Paris (1993)Google Scholar
  13. 13.
    Naumann, J.: Existence of weak solutions to the equations of stationary motion of heat-conducting incompressible viscous fluids. Progr. Nonlinear Differ. Equ. Appl. 64, 373–390 (2005)MathSciNetMATHGoogle Scholar
  14. 14.
    Prandtl, L.: In: Oertel, H. (ed.) Prandtl-Essentials of Fluid Mechanics. Springer, New York (2008)Google Scholar
  15. 15.
    Rota, G.-C.: Reynolds Operators. In: Bellman, R. (ed.) Stochastic Processes in Mathematical Physics and Engineering, pp. 70–83. American Mathematical Society, Rhode Island (1964)CrossRefGoogle Scholar
  16. 16.
    Wolff, M.: A global L k-gradient estimate on weak solutions to nonlinear stationary Navier–Stokes equations under mixed boundary conditions. Humboldt-Universität, Berlin. Preprint 96-3 (1996)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Faculty of Sciences and TechnologyUniversidade do AlgarveFaroPortugal
  2. 2.Centro de Matemática, Aplicações Fundamentais e Investigação Operacional (CMAFCIO)Universidade de LisboaLisboaPortugal

Personalised recommendations