Abstract
In this work we provide a numerical method for the diffusion equation with distributed order in time. The basic idea is to expand the unknown function in Chebyshev polynomials for the time variable t and reduce the problem to the solution of a system of algebraic equations, which may then be solved by any standard numerical technique. We apply the method to the forward and backward problems. Some numerical experiments are provided in order to show the performance and accuracy of the proposed method.
Keywords
- Fractional differential equation
- Caputo derivative
- Diffusion equation
- Chebyshev polynomials
- Distributed order equation
Mathematics Subject Classification (2000):
- 26A33
- 41A50
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Burden, R., Faires, J.: Numerical Analysis, 9th edn. Brooks-Cole Publishing Company, Boston (2011)
Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer, Heidelberg (2010)
Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S.: A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order. Comput. Math. Appl. 62, 2364–2373 (2011)
Ford, N.J., Morgado, M.L., Rebelo, M.: An implicit finite difference approximation for the solution of the diffusion equation with distributed order in time. Electron. Trans. Numer. Anal. 44, 289–305 (2015)
Gao, G.H., Sun, Z.Z.: Two alternating direction implicit difference schemes with the extrapolation method for the two-dimensional distributed-order differential equations. Comput. Math. Appl. 69, 926–948 (2015)
Gorenflo, R., Mainardi, F., Scalas, E., Raberto, M.: Fractional calculus and continuous-time finance III: the diffusion limit. In: Mathematical Finance, pp. 171–180. Springer, New York (2001)
Gorenflo, R., Luchko, Y., Stojanovic, M.: Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density. Fract. Calc. Appl. Anal. 16 (2), 297–316 (2013)
Mainardi, F., Raberto, M., Gorenflo, R., Scalas, E.: Fractional calculus and continuous-time finance II: the waiting-time distribution. Physica A 287, 468–481 (2000)
Mainardi, F., Pagnini, G., Mura, A., Gorenflo, R.: Time-fractional diffusion of distributed order. J. Vib. Control 14, 1267–1290 (2008)
Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A Math. Gen. 37, R161–R208 (2004)
Morgado, M.L., Rebelo, M.: Numerical approximation of distributed order reaction-diffusion equations. J. Comput. Appl. Math. 275, 216–227 (2015)
Ye, H., Liu, F., Anh, V., Turner, I.: Numerical analysis for the time distributed-order and Riesz space fractional diffusions on bounded domains. Int. J. Appl. Math. (2014). doi: 10.1093/imamat/hxu015
Acknowledgements
This work was partially supported by FCT (Portuguese Foundation for Science and Technology) within the projects UID/MAT/00013/2013 (Centro de Matemática) and UID/MAT/00297/2013 (Centro de Matemática e Aplicações).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Morgado, M.L., Rebelo, M. (2016). Chebyshev Spectral Approximation for Diffusion Equations with Distributed Order in Time. In: Pinelas, S., Došlá, Z., Došlý, O., Kloeden, P. (eds) Differential and Difference Equations with Applications. ICDDEA 2015. Springer Proceedings in Mathematics & Statistics, vol 164. Springer, Cham. https://doi.org/10.1007/978-3-319-32857-7_24
Download citation
DOI: https://doi.org/10.1007/978-3-319-32857-7_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-32855-3
Online ISBN: 978-3-319-32857-7
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)