Semantic Technologies for Managing Complex Product Information in Enterprise Systems

  • Bastian EineEmail author
  • Matthias Jurisch
  • Werner Quint
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 245)


Today, business transactions, including business processes and data management, are almost entirely electronic in nature. With regards to product information, enterprises are faced with the challenge of how to handle more and more information about products. Also, products information is getting more complex as enterprises tend to produce and offer more customizable products. Information systems of enterprises need functions based on specific technologies to be able to reduce and interpret the complexity of product information. This paper pursues the question, how the state of the art in information systems can be improved by the use of semantic technologies. For this purpose, three use cases of product information systems to be improved are described and approaches based on semantic technologies are proposed. The selected use cases are data integration, data quality and workflow integration.


Product information management Semantic technologies Enterprise systems 


  1. 1.
    O’Brien, J.A., Marakas, G.: Management Information Systems. McGraw-Hil/Irwin, New York (2011)Google Scholar
  2. 2.
    Sumner, M.: Enterprise Resource Planning. Prentince Hall, Indiana (2005)Google Scholar
  3. 3.
    Philpotts, M.: An introduction to the concepts, benefits and terminology of product data management. Indus. Manage. Data Syst. 96(4), 11–17 (1996)CrossRefGoogle Scholar
  4. 4.
    Ngai, E.W.T.: Customer relationship management research (1992‐2002): an academic literature review and classification. Mark. Intell. Plan. 23(6), 582–605 (2005)CrossRefGoogle Scholar
  5. 5.
    Boiko, B.: Content Management Bible. Wiley, New York (2001)Google Scholar
  6. 6.
    Gartner Magic Quadrant for Product Information Management 2007.
  7. 7.
    Lucas-Nülle, T.: Product Information Management in Deutschland - Marktstudie 2005. Pro-Literatur-Verl. Mayer-Scholz, Mammendorf (2005)Google Scholar
  8. 8.
    Sheldon, P., Goetz, M.: The Forrester Wave: Product Information Management, Q2 2014.
  9. 9.
    Gartner Magic Quadrant for Product Information Management 2005.
  10. 10.
    Pellegrini, T., Blumauer, A.: Semantic web und semantische technologien. In: Pellegrini, T., Blumauer, A. (eds.) Semantic Web - Wege zur vernetzten Wissensgesellschaft, pp. 9–25. Springer, Berlin (2006)Google Scholar
  11. 11.
    Pepper, S.: The TAO of Topic Map - Finding the Way in the Age of Infoglut.
  12. 12.
    Gruber, T.: Toward principles for the design of ontologies used for knowledge sharing. Int. J. Hum.-Comput. Stud. 43(5–6), 907–928 (1995)CrossRefGoogle Scholar
  13. 13.
  14. 14.
    Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284(5), 28–37 (2001)CrossRefGoogle Scholar
  15. 15.
    Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Sherlock, G.: Gene ontology: tool for the unification of biology. Nat. Genet. 25(1), 25–29 (2000)CrossRefGoogle Scholar
  16. 16.
    Hepp, M.: GoodRelations: an ontology for describing products and services offers on the web. In: Gangemi, A., Euzenat, J. (eds.) EKAW 2008. LNCS (LNAI), vol. 5268, pp. 329–346. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Hepp, M.: eClassOWL: a fully-fledged products and services ontology in OWL. In: 4th International Semantic Web Conference (ISWC2005) (2005)Google Scholar
  18. 18.
    Brunner, J.S., Ma, L., Wang, C., Zhang, L., Wolfson, D. C., Pan, Y., Srinivas, K.: Explorations in the use of semantic web technologies for product information management. In 16th International Conference on World Wide Web, pp. 747–756. ACM (2007)Google Scholar
  19. 19.
    Wauer, M., Schuster, D., Meinecke, J.: Aletheia: an architecture for semantic federation of product information from structured and unstructured sources. In: 12th International Conference on Information Integration and Web-based Application and Services, pp. 325–332. ACM (2010)Google Scholar
  20. 20.
    Stolz, A., Rodriguez-Castro, B., Hepp, M.: Using BMEcat catalogs as a lever for product master data on the semantic web. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 623–638. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  21. 21.
    Fitzpatrick, D., Coallier, F., Ratté, S.: A holistic approach for the architecture and design of an ontology-based data integration capability in product master data management. In: Rivest, L., Bouras, A., Louhichi, B. (eds.) PLM 2012. IFIP AICT, vol. 388, pp. 559–568. Springer, Heidelberg (2012)Google Scholar
  22. 22.
    Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2013)CrossRefzbMATHGoogle Scholar
  23. 23.
    Otero-Cerdeira, L., Rodriguez-Martinez, F.J., Gomez-Rodriguez, A.: Ontology matching: a literature review. Expert Syst. Appl. 42(2), 949–971 (2015)CrossRefGoogle Scholar
  24. 24.
    Delone, W.H., McLean, E.R.: The DeLone and McLean model of information systems success: a ten-year update. J. Manage. Inf. Syst. 19(4), 9–30 (2003)Google Scholar
  25. 25.
    Wang, R.Y., Strong, D.M.: Beyond accuracy: what data quality means to data consumers. J. Manage. Inf. Syst. 12(4), 5–34 (1996)CrossRefGoogle Scholar
  26. 26.
    Delone, W.H., Mclean, E.R.: Measuring e-commerce success: applying the DeLone & McLean information systems success model. Int. J. Electr. Commer. 9(1), 31–47 (2004)Google Scholar
  27. 27.
    Davis, F., Bagozzi, P., Warshaw, P.: User acceptance of computer technology - a comparison of two theoretical models. Manage. Sci. 35(8), 982–1003 (1989)CrossRefGoogle Scholar
  28. 28.
    Wang, Y.: Assessing e-commerce systems success: a respecification and validation of the DeLone and McLean model of IS success. Inf. Syst. J. 18(5), 529–557 (2008)CrossRefGoogle Scholar
  29. 29.
    Esswein, S., Goasguen, S., Post, C., Hallstrom, J., White, D., Eidson, G.: Towards ontology-based data quality inference in large-scale sensor networks. In 12th International Symposium on Cluster, Cloud and Grid Computing (Ccgrid 2012), pp. 898–903. IEEE Computer Society (2012)Google Scholar
  30. 30.
    Martin, N.: A methodology and architecture embedding quality assessment in data integration. J. Data Inf. Qual. 4(4), 17 (2004)Google Scholar
  31. 31.
    Fürber, C., Hepp, M.: Towards a vocabulary for data quality management in semantic web architectures. In: 1st International Workshop on Linked Web Data Management (LWDM 2011), pp. 1–8 (2011)Google Scholar
  32. 32.
    Garijo, D., Rey, M.: A new approach for publishing workflows: abstractions, standards, and linked data. In 6th workshop on Workflows in Support of Large-Scale Science, pp. 47–56 (2011)Google Scholar
  33. 33.
    Rospocher, M., Ghidini, C., Serafini, L.: An ontology for the business process modelling notation. In: 8th International Conference (FOIS 2014), p. 133. IOS Press (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.RheinMain University of Applied SciencesWiesbadenGermany

Personalised recommendations