Almström HARALD, Ekman G, Axelsson O, et al. Comparison of umbilical-artery velocimetry and cardiotocography for surveillance of small-for-gestational-age fetuses The Lancet. 1992;340:936–940.
Google Scholar
Amer-Wåhlin Isis, Hellsten Charlotte, Norén Håkan, et al. Cardiotocography only versus cardiotocography plus ST analysis of fetal electrocardiogram for intrapartum fetal monitoring: a Swedish randomised controlled trial The Lancet. 2001;358:534–538.
Google Scholar
Alfirevic Zarko, Devane Declan, Gyte GM, others . Continuous cardiotocography (CTG) as a form of electronic fetal monitoring (EFM) for fetal assessment during labour Cochrane Database Syst Rev. 2006;3:CD006066.
Google Scholar
D’Aloja E, Müller M, Paribello F, Demontis R, Faa A. Neonatal asphyxia and forensic medicine The Journal of Maternal-Fetal & Neonatal Medicine. 2009;22:54–56.
Google Scholar
Kingdom JCP, Kaufmann P. Oxygen and placental villous development: origins of fetal hypoxia Placenta. 1997;18:613–621.
Google Scholar
Nicolaides KH, Bilardo CM, Soothill PW, Campbell S, others . Absence of end diastolic frequencies in umbilical artery: a sign of fetal hypoxia and acidosis. Bmj. 1988;297:1026–1027.
Google Scholar
Hutter Damian, Jaeggi Edgar, others . Causes and mechanisms of intrauterine hypoxia and its impact on the fetal cardiovascular system: a review International journal of pediatrics. 2010;2010.
Google Scholar
Habek Dubravko, Habek JC, Jugović Domagoj, Salihagić A. [Intrauterine hypoxia and sudden infant death syndrome]. Acta medica Croatica: casopis Hravatske akademije medicinskih znanosti. 2001;56:109–118.
Google Scholar
Signorini Maria G, Magenes Giovanni, Cerutti Sergio, Arduini Domenico. Linear and nonlinear parameters for the analysisof fetal heart rate signal from cardiotocographic recordings Biomedical Engineering, IEEE Transactions on. 2003;50:365–374.
Google Scholar
Melman Sonja, Schoorel Ellen NC, Dirksen Carmen, et al. SIMPLE: implementation of recommendations from international evidence-based guidelines on caesarean sections in the Netherlands. Protocol for a controlled before and after study Implementation Sci. 2013;8.
Google Scholar
Chudáček Václav, Spilka Jiří, Burša Miroslav, et al. Open access intrapartum CTG database BMC pregnancy and childbirth. 2014;14:16.
Google Scholar
Goldberger Ary L, Amaral Luis AN, Glass Leon, et al. Physiobank, physiotoolkit, and physionet components of a new research resource for complex physiologic signals Circulation. 2000;101:e215–e220.
Google Scholar
Argiri Marina, Gayraud Nathalie T.E., Manis George. Fetal Heart Rate in the Course of Delivery: Vaginal and C-Sections in IEEE Proc, 37th annual international conference of the IEEE Engineering in Medicine and Biology Society;in press(Milano, Italy) 2015.
Google Scholar
Dijxhoorn MJ, Visser GHA, Huisjes HJ, Fidler V, Touwen BCL. The relation between umbilical pH values and neonatal neurological morbidity in full term appropriate-for-dates infants Early human development. 1985;11:33–42.
Google Scholar
Gilstrap Larry C, Leveno Kenneth J, Burris Jody, Williams M Lynne, Little Bertis B. Diagnosis of birth asphyxia on the basis of fetal pH, Apgar score, and newborn cerebral dysfunction American journal of obstetrics and gynecology. 1989;161:825–830.
Google Scholar
Georgieva Antoniya, Payne Stephen J, Moulden Mary, Redman Christopher WG. Artificial neural networks applied to fetal monitoring in labour Neural Computing and Applications. 2013;22:85–93.
Google Scholar
Harris JL, Krueger TR, Parer JT. Mechanisms of late decelerations of the fetal heart rate during hypoxia. American journal of obstetrics and gynecology. 1982;144:491–496.
Google Scholar
Cabaniss Micki L, Ross Michael G. Fetal monitoring interpretation. Lippincott Williams & Wilkins 2010.
Google Scholar