Advertisement

Conclusions

  • Brian Austin
  • Dawn A. Austin
Chapter

Abstract

There are ongoing developments in the understanding of bacterial fish pathogens. New and emerging diseases are regularly recognised especially in aquaculture. Great emphasis is placed on better diagnoses, pathogenicity mechanisms, and disease control especially by immunoprophylaxis (vaccines, nonspecific immunostimulants, probiotics and natural plant products). There is an interaction between some pollutants and occurrence of fish diseases. Some fish pathogens may also cause disease of humans, including Edw. tarda, Myc. fortuitum, Myc. marinum, Ph. damselae, Ps. fluorescens, Str. iniae and V. vulnificus.

Keywords

Zoonosis Co-infection Developments Pollution New diseases 

References

  1. Andree KR, Rodgers CJ, Furones D, Gisbert E (2013) Co-infection with Pseudomonas anguilliseptica and Delftia acidovorans in the European eel, Anguilla anguilla (L.): a case history of an illegally trafficked protected species. J Fish Dis 36:647–656CrossRefPubMedGoogle Scholar
  2. Arkoosh MR, Casillas E, Huffman P, Clemons E, Evered J, Stein JE, Varanasi U (1998) Increased susceptibility of juvenile chinook salmon from a contaminated estuary to Vibrio anguillarum. Trans Am Fish Soc 127:360–374CrossRefGoogle Scholar
  3. Austin B, Stobie M (1992) Recovery of Serratia plymuthica and presumptive Pseudomonas pseudoalcaligenes from skin lesions in rainbow trout, Oncorhynchus mykiss (Walbaum), otherwise infected with enteric redmouth. J Fish Dis 15:541–543Google Scholar
  4. Bruhn JB, Dalsgaard I, Nielsen KF, Buchholtz C, Larsen JL, Gram L (2005) Quorum sensing signal molecules (acylated homoserine lactones) in Gram-negative fish pathogenic bacteria. Dis Aquat Org 65:43–52CrossRefPubMedGoogle Scholar
  5. Bucke D (1991) Current approaches to the study of pollution-related diseases of fish. Bull Eur Assoc Fish Pathol 11:46–53Google Scholar
  6. Bucke D (1997) Facts and myths regarding pollution and fish health. Bull Eur Assoc Fish Pathol 17:191–196Google Scholar
  7. Bucke D, Vethaak AD, Lang T (1992) Quantitative assessment of melanomacrophage centres (MMCs) in dab Limanda limanda as indicators of pollution effects on the non-specific immune system. Mar Prog Ser 91:193–196CrossRefGoogle Scholar
  8. Dethlefsen V, Watermann B (1980) Epidermal papilloma of North Sea dab, Limanda limanda: histology, epidemiology and relation to dumping from TiO2 industry. ICES Spec Meet Dis Commerc Imp Mar Fish Shellfish 8:1–30Google Scholar
  9. Dethlefsen V, Watermann B, Hoppenheit M (1987) Diseases of North Sea dab (Limanda limanda L.) in relation to biological and chemical parameters. Arch Fisch 37:101–237Google Scholar
  10. Dethlefsen V, Lang T, Koves P (2000) Regional patterns in prevalence of principal external diseases of dab Limanda limanda in the North Sea and adjacent areas 1992–1997. Dis Aquat Org 42:119–132CrossRefPubMedGoogle Scholar
  11. Dong HT, Nguyen VV, Phiwsaiya K, Gangnonngiw W, Withyachumnarnkul B, Rodkhum C, Senapin S (2015a) Concurrent infections of Flavobacterium columnare and Edwardsiella ictaluri in striped catfish, Pangasianodon hypophthalmus in Thailand. Aquaculture 448:142–150CrossRefGoogle Scholar
  12. Dong HT, Nguyen VV, Le HD, Sangsuriya P, Jitrakorn S, Saksmerprome V, Senapin S, Rodkhum C (2015b) Naturally concurrent infections of bacterial and viral pathogens in disease outbreaks in cultured Nile tilapia (Oreochromis niloticus) farms. Aquaculture 448:427–435CrossRefGoogle Scholar
  13. Dudley DJ, Guentzel MN, Ibarra MJ, Moore BE, Sagik BP (1980) Enumeration of potentially pathogenic bacteria from sewage sludges. Appl Environ Microbiol 39:118–126PubMedPubMedCentralGoogle Scholar
  14. Ekman E, Åkerman G, Balk L, Norrgren L (2004) Impact of PCB on resistance to Flavobacterium psychrophilum after experimental infection of rainbow trout Oncorhynchus mykiss eggs by nanoinjection. Dis Aquat Org 60:31–39CrossRefPubMedGoogle Scholar
  15. Fichi G, Cardeti G, Cocumelli C, Vendramin N, Toffan A, Eleni C, Siemoni N, Fischetti R, Susini F (2013) Detection of cyprinid herpesvirus 2 in association with an Aeromonas sobria infection of Carassius carassius (L.) in Italy. J Fish 36:823–830Google Scholar
  16. Gauthier DT (2015) Bacterial zoonoses of fishes: a review and appraisal of evidence for linkages between fish and human infections. Vet J 203:27–35CrossRefPubMedGoogle Scholar
  17. Grawinski E, Antychowicz J (2001) The pathogenicity of Serratia plymuthica for salmonid fish. Med Weter 57:187–189Google Scholar
  18. Hanson LA, Grizzle JM (1985) Nitrite-induced predisposition of channel catfish to bacterial diseases. Prog Fish Cult 47:98–101CrossRefGoogle Scholar
  19. Hjerde E, Karlsen C, Sørum H, Parkhill J, Willassen NP, Thomson NR (2015) Co-cultivation and transcriptome sequencing of two co-existing fish pathogens Moritella viscosa and Aliivibrio wodanis. BMC Genomics 16. doi: 10.1186/s12864-015-1669-z
  20. Jacquez GM, Ziskowski J, Rolfe FJ (1994) Criteria for the evaluation of alternative environmental monitoring variables: theory and an application using winter flounder (Pleuronectes americanus) and Dover sole (Microstomus pacificus). Environ Monit Assess 30:275–290CrossRefPubMedGoogle Scholar
  21. Jantrakajorn S, Maisak H, Wongtavatchai J (2014) Comprehensive investigation of streptococcosis outbreaks in cultured Nile tilapia, Oreochromis niloticus, and red tilapia, Oreochromis sp., of Thailand. J World Aquacult Soc 45:392–402CrossRefGoogle Scholar
  22. Karlsen C, Vanberg C, Mikkelsen H, Sorum H (2014) Co-infection of Atlantic salmon (Salmo salar), by Moritella viscosa and Aliivibrio wodanis, development of disease and host colonization. Vet Microbiol 171:112–121CrossRefPubMedGoogle Scholar
  23. Khan RA (1987) Crude oil and parasites of fish. Parasitol Today 3:99–100CrossRefPubMedGoogle Scholar
  24. Kirk RS, Lewis JW (1993) An evaluation of pollutant induced changes in the gills or rainbow trout using scanning electron microscopy. Environ Technol 14:577–585CrossRefGoogle Scholar
  25. Klesius PH, Shoemaker CA (2003) The disease continuum model: bi-dirivctional response between stress and infection linked by neuroimmune change. In: Lee CS, O’Bryen PJ (eds) Biosecurity in aquaculture production systems: exclusion of pathogens and other undesirables. World Aquaculture Society, Baton Rouge, pp 13–14Google Scholar
  26. Landsberg JH (1995) Tropical reef-fish disease outbreaks and mass mortalities in Florida, USA: what is the role of dietary biological toxins? Dis Aquat Org 22:83–100CrossRefGoogle Scholar
  27. Loch TP, Scribner K, Tempelman R, Whelan G, Faisal M (2012) Bacterial infection of Chinook salmon, Oncorhynchus tshawytscha (Walbaum) returning to gamete collecting weirs in Michigan. J Fish Dis 35:39–50CrossRefPubMedGoogle Scholar
  28. Mahoney JB, Midlige FH, Deuel DG (1973) A fin rot disease of marine and euryhaline fishes in the New York Bight. Trans Am Fish Soc 102:597–605CrossRefGoogle Scholar
  29. McVicar AH, Bruno DW, Fraser CO (1988) Fish diseases in the North Sea in relation to sewage sludge dumping. Mar Pollut Bull 11:169–173CrossRefGoogle Scholar
  30. Pakingking R, Takano R, Nishizawa T, Mori K-I, Iida Y, Arimoto M, Muroga K (2003) Experimental coinfection with aquabirnavirus and viral hemorrhagic septicemia virus (VHSV), Edwardsiella tarda or Streptococcus iniae in Japanese flounder Paralichthys olivaceus. Fish Pathol 38:15–21CrossRefGoogle Scholar
  31. Pippy JHC, Hare GM (1969) Relationship of river pollution to bacterial infection in salmon (Salmo salar) and suckers (Catostomus commersoni). Trans Am Fish Soc 98:685–690CrossRefGoogle Scholar
  32. Prabakaran M, Binuramesh C, Steinhagen D, Michael RD (2006) Immune response and disease resistance of Oreochromis mossambicus to Aeromonas hydrophila after exposure to hexavalent chromium. Dis Aquat Org 68:189–196CrossRefPubMedGoogle Scholar
  33. Qin L, Zhu M, Xu J (2014) First report of Shewanella sp and Listonella sp infection in freshwater cultured loach, Misgurnus anguillicaudatus. Aquac Res 45:602–608CrossRefGoogle Scholar
  34. Rivas AJ, Balado M, Lemos ML, Osorio CR (2013a) Synergistic and additive effects of chromosomal and plasmid-encoded hemolysins contribute to hemolysis and virulence in Photobacterium damselae subsp damselae. Infect Immun 81:3287–3299CrossRefPubMedPubMedCentralGoogle Scholar
  35. Rivas AJ, Lemos ML, Osorio CR (2013b) Photobacterium damselae subsp damselae, a bacterium pathogenic for marine animals and humans. Front Microbiol 4:283. doi: 10.3389/fmicb.2013.00283 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Robohm RA, Brown C, Murchelano RA (1979) Comparison of antibodies in marine fish from clean and polluted waters of the New York Bight: relative levels against 36 bacteria. Appl Environ Microbiol 38:248–257PubMedPubMedCentralGoogle Scholar
  37. Rødsaether MC, Olafsen J, Raa J, Myhre K, Steen JB (1977) Copper as an initiating factor of vibriosis (Vibrio anguillarum) in eel (Anguilla anguilla). J Fish Biol 10:17–21CrossRefGoogle Scholar
  38. Sandell TA, Teel DJ, Fisher J, Beckman B, Jacobson KC (2015) Infections by Renibacterium salmoninarum and Nanophyetus salmincola Chaplin are associated with reduced growth of juvenile Chinook salmon, Oncorhynchus tshawytscha (Walbaum), in the Northeast Pacific Ocean. J Fish Dis 38:365–378CrossRefPubMedGoogle Scholar
  39. Schmidt-Posthaus H, Polkinghorne A, Nufer L, Schifferli A, Zimmermann DR, Segner H, Steiner P, Vaughan L (2012) A natural freshwater origin for two chlamydial species, Candidatus Piscichlamydia salmonis and Candidatus Clavochlamydia salmonicola, causing mixed infections in wild brown trout (Salmo trutta). Environ Microbiol 14:2048–2057CrossRefPubMedGoogle Scholar
  40. Scott SJ, Bollinger TK (2014) Flavobacterium columnare: an important contributing factor to fish die-offs in southern lakes of Saskatchewan, Canada. J Vet Diagn Investig 26:832–836CrossRefGoogle Scholar
  41. Siddall R, Pike AW, McVicar AH (1994) Parasites of flatfish in relation to sewage dumping. J Fish Biol 45:193–209CrossRefGoogle Scholar
  42. Smith KF, Schmidt V, Rosen GE, Amaral-Zettler L (2012) Microbial diversity and potential pathogens in ornamental fish aquarium water. PLOS One 7. doi: 10.1371/journal.pone.0039971 Google Scholar
  43. Song JY, Nakayama K, Murakami Y, Jung SJ, Oh MJ, Matsuoka S, Kawakami H, Kitamura SI (2008) Does heavy oil pollution induce bacterial diseases in Japanese flounder Paralichthys olivaceus? Mar Pollut Bull 57:6–12CrossRefGoogle Scholar
  44. Valdenegro-Vega VA, Cook M, Crosbie P, Bridle AR, Nowak BF (2015) Vaccination with recombinant protein (r22C03), a putative attachment factor of Neoparamoeba perurans, against AGD in Atlantic salmon (Salmo salar) and implications of a co-infection with Yersinia ruckeri. Fish Shellfish Immunol 44:592–602CrossRefPubMedGoogle Scholar
  45. Vethaak AD (1992) Diseases of flounder (Platichthys flesus L.) in the Dutch Wadden Sea, and their relation to stress factors. Neth J Sea Res 29:257–272CrossRefGoogle Scholar
  46. Vethaak AD, ap Rheinallt T (1992) Fish disease as a monitor for marine pollution: the case of the North Sea. Rev Fish Biol Fish 2:1–32CrossRefGoogle Scholar
  47. Vethaak AD, Jol JG (1996) Diseases of flounder Platichthys flesus in Dutch coastal and estuarine waters, with particular reference to environmental stress factors. 1. Epizootiology of gross lesions. Dis Aquat Org 26:81–97CrossRefGoogle Scholar
  48. Vethaak AD, Bucke D, Lang T, Wester P, Johl J, Carr M (1992) Fish disease monitoring along a pollution transect: a case study using dab Limanda limanda in the German Bight, North Sea. Mar Ecol Prog Ser 91:173–192CrossRefGoogle Scholar
  49. Vethaak AD, Jol JG, Meijboom A, Eggens ML, Ap Rheinallt T, Wester PW, Van De Zande T, Bergman A, Dankers N, Ariese F, Baan RA, Everts JM, Opperhuizen A, Marquenie JM (1996) Skin and liver diseases induced in flounder (Platichthys flesus) after long-term exposure to contaminated sediments in large-scale mesocosms. Environ Health Perspect 104:1218–1229CrossRefPubMedPubMedCentralGoogle Scholar
  50. Voigt H-R (1994) Fish surveys in the Vaike Vain Strait between the islands of Saaremaa and Muhu, Western Estonia. Proc Estonian Acad Sci Ecol 4:128–135Google Scholar
  51. Xu D-H, Pridgeon JW, Klesius PH, Shoemaker CA (2012a) Parasitism by protozoan Ichthyophthirius multifiliis enhanced invasion of Aeromonas hydrophila in tissues of channel catfish. Vet Parasitol 184:101–107CrossRefPubMedGoogle Scholar
  52. Xu D-H, Shoemaker CA, Klesius PH (2012b) Ichthyophthirius multifiliis as a potential vector of Edwardsiella ictaluri in channel catfsh. FEMS Microbiol Lett 329:160–167CrossRefPubMedGoogle Scholar
  53. Xu D-H, Shoemaker CA, LaFrentz BR (2014) Enhanced susceptibility of hybrid tilapia to Flavobacterium columnare after parasitism by Ichthyophthirius multifiliis. Aquaculture 430:44–49CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Brian Austin
    • 1
  • Dawn A. Austin
    • 2
  1. 1.Institute of AquacultureUniversity of StirlingStirlingUK
  2. 2.School of Life SciencesHeriot-Watt UniversityEdinburghUK

Personalised recommendations