• Brian Austin
  • Dawn A. Austin


Historically, scientists have seemed loath to make rapid diagnoses, preferring to adopt laborious testing regimes. Yet, diagnostic techniques have their drawbacks insofar as it is not always certain that the actual pathogen is recognized. Culture-dependent methods may highlight secondary invader or contaminants. Culture-independent techniques, although often highly sensitive and specific, do not provide information about the precise location, role or activity/inactivity of the organism. Nevertheless, there have been dramatic improvements in diagnostic methods, encompassing recent developments in molecular biology.


Diagnosis Phenotyping Serology Molecular methods Rapid methods 


  1. Adams A, Thompson KD, Morris D, Farias C, Chen SC (1995) Development and use of monoclonal antibody probes for immunohistochemistry, ELISA and IFAT to detect bacterial and parasitic fish pathogens. Fish Shellfish Immunol 5:537–547CrossRefGoogle Scholar
  2. Ahne W (1981) Serological techniques currently used in fish virology. Dev Biol Stand 49:3–27Google Scholar
  3. Amandi A, Hiu SF, Rohovec JS, Fryer JL (1982) Isolation and characterization of Edwardsiella tarda from chinook salmon (Oncorhynchus tshawytscha). Appl Environ Microbiol 43:1380–1384PubMedPubMedCentralGoogle Scholar
  4. Austin B, Allen DA, Zachary A, Belas MR, Colwell RR (1979) Ecology and taxonomy of bacteria attaching to wood surfaces in a tropical harbor. Can J Microbiol 25:447–461CrossRefPubMedGoogle Scholar
  5. Austin B, Bishop I, Gray C, Watt B, Dawes J (1986) Monoclonal antibody-based enzyme-linked immunosorbent assays for the rapid diagnosis of clinical cases of enteric redmouth and furunculosis in fish farms. J Fish Dis 9:469–474CrossRefGoogle Scholar
  6. Bullock GL, Griffin BR, Stuckey HM (1980) Detection of Corynebacterium salmoninus by direct fluorescent antibody test. Can J Fish Aquat Sci 37:719–721CrossRefGoogle Scholar
  7. Busch RA, Lingg A (1975) Establishment of an asymptomatic carrier state infection of enteric redmouth disease in rainbow trout (Salmo gairdneri). J Fish Res Board Can 32:2429–2432CrossRefGoogle Scholar
  8. Chang C-I, Hung P-H, Wu C-C, Cheng TC, Tsai J-M, Lin K-J, Lin C-Y (2012) Simultaneous detection of multiple fish pathogens using a naked-eye readable DNA microarray. Sensors 12:2710–2728CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chang W-H, Yang S-Y, Wang C-H, Tsai M-A, Wang P-C, Chen T-Y, Chen S-C, Lee G-B (2013) Rapid isolation and detection of aquaculture pathogens in an integrated microfluidic system using loop-mediated isothermal amplification. Sens Actuators B Chem 180:96–106CrossRefGoogle Scholar
  10. Cowan ST (1974) Cowan and steel’s manual for the identification of medical bacteria, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  11. Del Cerro A, Mendoza MC, Guijarro JA (2002a) Usefulness of a TaqMan-based polymerase chain reaction assay for the detection of the fish pathogen Flavobacterium psychrophilum. J Appl Microbiol 93:149–156CrossRefPubMedGoogle Scholar
  12. Del Cerro AL, Marquez I, Guijarro JA (2002b) Simultaneous detection of Aeromonas salmonicida, Flavobacterium psychrophilum and Yersinia ruckeri, three major fish pathogens, by multiplex PCR. Appl Environ Microbiol 68:5177–5180CrossRefPubMedPubMedCentralGoogle Scholar
  13. Doetsch RN (1981) 3. Determinative method of light microscopy. In: Gerhardt P (ed) Manual of methods for general bacteriology. American Society of Microbiology, Washington, DC, pp 21–23Google Scholar
  14. Eurell TE, Lewis DH, Grumbles LC (1978) Comparison of selected diagnostic tests for detection of motile Aeromonas septicaemia in fish. Am J Vet Res 39:1384–1386PubMedGoogle Scholar
  15. Evensen Ø, Espelid S, Håstein T (1991) Immunohistochemical identification of Vibrio salmonicidain stored tissues of Atlantic salmon Salmosalar from the first known outbreaks of coldwater vibriosis (‘Hitra disease’). Dis Aquat Org 10:185–189CrossRefGoogle Scholar
  16. Geck P (1971) India ink immuno-reaction for the rapid detection of enteric pathogens. Acta Microbiol Acad Sci Hung 18:191–196PubMedGoogle Scholar
  17. Goerlich R, Schlüsener HJ, Lehmann J, Greuel E (1984) The application of monoclonal antibodies to diagnosis of Aeromonas salmonicida infections in fishes. Bull Eur Assoc Fish Pathol 4:66Google Scholar
  18. González SF, Krug MJ, Nielsen ME, Santos Y, Call DR (2004) Simultaneous detection of marine fish pathogens by using multiplex PCR and a DNA microarray. J Clin Microbiol 42:1414–1419CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hansen CB, Lingg AJ (1976) Inert particle agglutination tests for detection of antibody to enteric redmouth bacterium. J Fish Res Board Can 33:2857–2860CrossRefGoogle Scholar
  20. Hugh R, Leifson E (1953) The taxonomic significance of fermentative versus oxidative metabolism of carbohydrate by various Gram-negative bacteria. J Bacteriol 66:24–26PubMedPubMedCentralGoogle Scholar
  21. Itsaro A, Suanyuk N, Tantikitti C (2013) Multiplex PCR for simultaneous detection of Streptococcus agalactiae, Streptococcus iniae and Lactococcus garvieae: a case of S. agalactiae infection in cultured Nile tilapia (Oreochromis niloticus) and red tilpia (Oreochromis niloticus x Oreochromis mossambicus). Songklanakarin J Sci Technol 34:495–500Google Scholar
  22. Jansson E, Hongslo T, Lindberg R, Ljungberg O, Svensson B-M (1991) Detection of Renibacterium salmoninarum and Yersinia ruckeri by the peroxidase-antiperoxidaseimmunohistochemical technique in melanin-containing cells of fish tissue. J Fish Dis 14:689–692CrossRefGoogle Scholar
  23. Johnson GR, Wobeser G, Rouse BT (1974) Indirect fluorescent antibody technique for detection of RM bacterium of rainbow trout (Salmo gairdneri). J Fish Res Board Can 31:1957–1959CrossRefGoogle Scholar
  24. Jones GL, Hebert GA, Cherry WB (1978) Fluorescent antibody techniques and bacterial application. US Department of Health, Education and Welfare Publication Number (CDC) 78-8364, 118p.Google Scholar
  25. Kawahara E, Kusuda R (1987) Direct fluorescent antibody technique for diagnosis of bacterial disease in eel. Nippon Suisan Gakkaishi 53:395–399CrossRefGoogle Scholar
  26. Kim MS, Cho JY, Choi HS (2014a) Identification of Vibrio harveyi, Vibrio ichthyoenteri, and Photobacterium damselae isolated from olive flounder Paralichthys olivaceus in Korea by multiplex PCR developed using the rpoB gene. Fish Sci 80:333–339Google Scholar
  27. Kim S-S, Shin S-J, Han H-S, Kim J-D, Lee K-J (2014b) Effects of dietary Spirulina pacifica on innate immunity and disease resistance against Edwardsiella tarda in olive flounder Paralichthys olivaceus. Isr J Aquacult – Bamidgeh 67Google Scholar
  28. Kim MS, Jin JW, Han HJ, Choi HS, Hong S, Cho JY (2014b) Genotype and virulence of Streptococcus iniae from diseased olive flounder Paralichthy olivaceus in Korea. Fish Sci 80:1277–1284CrossRefGoogle Scholar
  29. Kimura T, Yoshimizu M (1981) A coagglutination test with antibody-sensitized staphylococci for rapid and simple diagnosis of bacterial kidney disease (BKD). Dev Biol Stand 49:135–148Google Scholar
  30. Kimura T, Yoshimizu M (1983) Coagglutination test with antibody-sensitized staphylococci for rapid and simple serological diagnosis of fish furunculosis. Fish Pathol 17:259–262CrossRefGoogle Scholar
  31. Kimura T, Yoshimizu M (1984) Coagglutination test with antibody-sensitized staphylococci for rapid serological identification of rough strains of Aeromonas salmonicida. Bull Jpn Soc Sci Fish 50:439–442CrossRefGoogle Scholar
  32. Kimura T, Ezura K, Tajima K, Yoshimizu M (1978) Serological diagnosis of bacterial kidney disease (BKD); immunodiffusion test by heat stable antigen extracted from infected kidney. Fish Pathol 13:103–108Google Scholar
  33. King EO, Ward MK, Raney DE (1954) Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Clin Med 44:301–307PubMedGoogle Scholar
  34. Kitao T (1982) The methods for detection of Streptococcus sp. causative bacteria of streptococcal disease of cultured yellowtail (Seriola quinqueradiata). Fish Pathol 17:17–26CrossRefGoogle Scholar
  35. Kitao T, Aoki T, Iwata K (1979) Epidemiological study on streptococcicosis of cultured yellowtail (Seriola quinqueradiata) – I. Distribution of Streptococcus sp. in sea water and muds around yellowtail farms. Bull Jpn Soc Sci Fish 45:567–572CrossRefGoogle Scholar
  36. Laidler LA (1980) Detection and identification of the bacterial kidney disease (BKD) organism by the indirect fluorescent antibody technique. J Fish Dis 3:67–69CrossRefGoogle Scholar
  37. Leifson E (1963) Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85:1183–1184PubMedPubMedCentralGoogle Scholar
  38. Longyant S, Chaiyasittrakul K, Rukpratanporn S, Chaivisuthangkura P, Sithigorngul P (2010) Simple and direct detection of Aeromonas hydrophila infection in the goldfish, Carassius auratus(L.), by dot blotting using specific monoclonal antibodies. J Fish Dis 33:973–984CrossRefPubMedGoogle Scholar
  39. López JR, Navas JI, Thanantong N, de la Herran R, Sparagano OAE (2012) Simultaneous identification of five marine fish pathogens belonging to the genera Tenacibaculum, Vibrio, Photobacterium and Pseudomonas by reverse line blot hybridization. Aquaculture 324:33–38CrossRefGoogle Scholar
  40. Lowe GH (1962) The rapid detection of lactose fermentation in paracolon organisms by the demonstration of ß-galactosidase. J Med Lab Technol 19:21–31PubMedGoogle Scholar
  41. Lukkana M, Jantrakajorn S, Paimsomboon P, Wongtavatchai J (2014) Simultaneous detection of Steptococcus spp. and Aeromonas spp. from diseased tilapia (Oreochromis niloticus) using multiplex-polymerase chain reaction. Isr J Aquacult Bamidgeh 66:10–23Google Scholar
  42. Mata AI, Gibello A, Casamayor A, Blanco MM, Domínquez L, Fernández-Garayzábal JF (2004) Multiplex PCR assay for the detection of bacterial pathogens associated with warm-water streptococcosis in fish. Appl Environ Microbiol 70:3183–3187CrossRefPubMedPubMedCentralGoogle Scholar
  43. Matsuyama T, Kamaishi T, Oseko N (2006) Rapid discrimination of fish pathogenic Vibrio and Photobacterium species by oligonucleotide DNA array. Fish Pathol 41:105–112CrossRefGoogle Scholar
  44. McCarthy DH (1975a) Detection of Aeromonas salmonicida antigen in diseased fish tissue. J Gen Microbiol 88:185–187CrossRefGoogle Scholar
  45. McCarthy DH (1975b) Fish furunculosis. J Inst Fish Manag 6:13–18Google Scholar
  46. McCarthy DH, Rawle CT (1975) Rapid serological diagnosis of fish furunculosis caused by smooth and rough strains of Aeromonas salmonicida. J Gen Microbiol 86:185–187CrossRefPubMedGoogle Scholar
  47. McCarthy DH, Whitehead P (1977) An immuno-india ink technique for rapid laboratory diagnosis of fish furunculosis. J Appl Bacteriol 42:429–431CrossRefPubMedGoogle Scholar
  48. Møller V (1955) Simplified tests for some amino acid decarboxylases and for the arginine dihydrolase system. Acta Pathol Microbiol Scand 36:58–172Google Scholar
  49. Morris DJ, Turgut E, Thompson KD (2002) The use of melanin bleaching for the immunohistochemical detection of Renibacterium salmoninarum. Bull Eur Assoc Fish Pathol 22:33–36Google Scholar
  50. Nese L, Enger Ø (1993) Isolation of Aeromonas salmonicida from salmon lice Lepeophtheirussalmonis and marine plankton. Dis Aquat Org 16:79–81CrossRefGoogle Scholar
  51. Park SB, Kwon K, Cha IS, Jang HB, Nho SW, Fagutao FF, Kim YK, Yu JE, Jung TS (2014) Development of a multiplex PCR assay to detect Edwardsiella tarda, Streptococcus parauberis, and Streptococcus iniae in olive flounder (Paralichthys olivaceus). J Vet Sci 15:163–166CrossRefPubMedPubMedCentralGoogle Scholar
  52. Romalde JL, Magariños B, Fouz B, Bandín I, Núñez S, Toranzo AE (1995) Evaluation of BIONOR Mono-kits for rapid detection of bacterial fish pathogens. Dis Aquat Org 21:25–34CrossRefGoogle Scholar
  53. Saeed MO, Plumb JA (1987) Serological detection of Edwardsiella ictaluri Hawke lipopolysaccharide antibody in serum of channel catfish Ictalurus punctatus Rafinesque. J Fish Dis 10:205–209CrossRefGoogle Scholar
  54. Shi Y-H, Chen J, Li C-H, Lu X-J, Zhang D-M, Li H-Y, Zhao Z-X, Li M-Y (2012) Detection of bacterial pathogens in aquaculture samples by DNA microarray analysis. Aquaculture 338–341:29–35CrossRefGoogle Scholar
  55. Smibert RM, Krieg WR (1981) 20. General characterization. In: Gerhardt P (ed) Manual of methods for general bacteriology. American Society of Microbiology, Washington, DC, pp 409–443Google Scholar
  56. Smith HL, Goodner IK (1958) Detection of bacterial gelatinases by gelatin-agar plate method. J Bacteriol 76:662–665PubMedPubMedCentralGoogle Scholar
  57. Soltani M, Pirali E, Shayan P, Eckert B, Rouholahi S, Sadr SN (2012) Development of a reverse line blot hybridization method for detection of some streptococcal/lactococcal species, the causative agents of zoonotic streptococosis/lactococosis in farmed fish. Iran J Microbiol 4:70–74PubMedPubMedCentralGoogle Scholar
  58. Stuart CA, van Stratum E, Rustigian R (1945) Further studies on urease production by Proteus and related organisms. J Bacteriol 49:437PubMedPubMedCentralGoogle Scholar
  59. Swain P, Nayak SK (2003) Comparative sensitivity of different serological tests for seromonitoring and surveillance of Edwardsiella tarda infection of Indian major carps. Fish Shellfish Immunol 15:333–340CrossRefPubMedGoogle Scholar
  60. Teska JH, Shotts EB, Hsu TC (1989) Automated biochemical identification of bacterial fish pathogens using the Abbott Quantum II. J Wildl Dis 25:103–107CrossRefPubMedGoogle Scholar
  61. Toranzo AE, Baya AM, Roberson BS, Barja JL, Grimes DJ, Hetrick FM (1987) Specificity of slide agglutination test for detecting bacterial fish pathogens. Aquaculture 61:81–97CrossRefGoogle Scholar
  62. Verner-Jeffreys DW, Roberts E, Driscoll J, Bayley AE, Algoët M (2011) Evaluation of the Biolog Microlog 1 system for the identification og gram positive cocci pathogenic for fish. Bull Eur Assoc Fish Pathol 31:171–181Google Scholar
  63. Yu L-P, Hu Y-H, Zhang X-H, Sun B-G (2013) Development of a triplex loop-mediated isothermal amplification method for rapid on-site detection of three Vibrio species associated with fish diseases. Aquaculture 414:267–273CrossRefGoogle Scholar
  64. Zhou Q-J, Wnag L, Chen J, Wang R-N, Shi Y-H, Li C-H, Zhang D-M, Yan X-J, Zhang Y-J (2014) Development and evaluation of a real-time loop-mediated isothermal amplification assay integrated ona microfluidic disc chip (on-chip LAMP) for rapid and simultaneous detection of ten pathogenic bacteria of aquatic animals. J Microbiol Methods 104:26–35Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Brian Austin
    • 1
  • Dawn A. Austin
    • 2
  1. 1.Institute of AquacultureUniversity of StirlingStirlingUK
  2. 2.School of Life SciencesHeriot-Watt UniversityEdinburghUK

Personalised recommendations