Advertisement

Miscellaneous Pathogens

  • Brian Austin
  • Dawn A. Austin
Chapter

Abstract

Pseudoalteromonas piscicida, Pseudoalteromonas undina, Shewanella putrefaciens, Arcobacter cryaerophilus, Halomonas (=Deleya) cupida, Acinetobacter sp., Moraxella sp., Moritella marina, Moritella viscosa, Mycoplasma mobile, Myxococcus piscicola, Aquaspirillum sp., Janthinobacterium lividum, Pasteurella skyensis, Piscirickettsia salmonis, Rickettsia-like organisms, Streptobacillus,Candidatus Arthromitus’, ‘Candidatus Branchiomonas cysticola’, ‘Candidatus Clavochlamydia salmonicola’, ‘Candidatus Piscichlamydia salmonis’ and ‘Candidatus Renichlamydia lutjani’ have been associated with fish diseases. Moritella viscosa has been recovered from winter ulcer disease (= skin lesions) in Atlantic salmon with pathogenicity mechanisms reflecting the presence of extracellular products. Protection has been achieved with an adjuvanted formalin inactivated whole cell vaccine. Piscirickettsia salmonis is an obligate parasite, which has been associated with coho salmon syndrome, Huito disease and salmonid rickettsial septicaemia. Good protection was recorded by use of a formalised whole cell suspension. ‘Candidatus’ are uncultured organisms, which may be visualised in pathological material.

Keywords

Epitheliocystis Winter ulcer disease Piscirickettsiosis Red egg disease Epizootic ulcerative syndrome 

References

  1. Aguayo J, Miquel A, Aranki N, Jamett A, Valenzuela PDT, Burzio LO (2002) Detection of Piscirickettsia salmonis in fish tissues by an enzyme-linked immunosorbent assay using specific monoclonal antibiodies. Dis Aquat Org 49:33–38PubMedCrossRefGoogle Scholar
  2. Allen DA, Austin B, Colwell RR (1983) Numerical taxonomy of bacterial isolates associated with a freshwater fishery. J Gen Microbiol 129:2043–2062Google Scholar
  3. Almendras FE, Fuentealba IC, Jones SRM, Markham F, Spangler E (1997) Experimental infection and horizontal transmission of Piscririckettsia salmonis in freshwater-raised Atlantic salmon, Salmo salar L. J Fish Dis 20:409–418CrossRefGoogle Scholar
  4. Andree KR, Rodgers CJ, Furones D, Gisbert E (2013) Co-infection with Pseudomonas anguilliseptica and Delftia acidovorans in the European eel, Anguilla anguilla (L.): a case history of an illegally trafficked protected species. J Fish Dis 36:647–656PubMedCrossRefGoogle Scholar
  5. Arkush KD, Mcbride AM, Mendonca HL, Okihiro MS, Andree KB, Marshall S, Henriquez V, Hedrick RP (2005) Genetic characterization and experimental pathogenesis of Piscirickettsia salmonis isolated from white seabass Atractascion nobilis. Dis Aquat Org 63:139–149PubMedCrossRefGoogle Scholar
  6. Austin B (1982) Taxonomy of bacteria isolated from a coastal, marine fish-rearing unit. J Appl Bacteriol 53:253–268CrossRefGoogle Scholar
  7. Austin B, Gonzalez CJ, Stobie M, Curry JI, McLoughlin MF (1992) Recovery of Janthinobacterium lividum from diseased rainbow trout, Oncorhynchus mykiss (Walbaum), in Northern Ireland and Scotland. J Fish Dis 15:357–359Google Scholar
  8. Austin DA, Jordan EM, Austin B (2003) Recovery of an unusual Gram-negative bacterium from ulcerated rainbow trout, Oncorhynchus mykiss (Walbaum), in Scotland. J Fish Dis 26:247–249PubMedCrossRefGoogle Scholar
  9. Aydin S, Gültepe N, Yildiz H (2000) Natural and experimental infections with Campylobacter cryaerophilus in rainbow trout: gross pathology, bacteriology, clinical pathology, and chemotherapy. Fish Pathol 35:117–123CrossRefGoogle Scholar
  10. Aydin S, Engin M, Bircan R (2002) A comparative investigation of Arcobacter cryaerophilus infection among Albino crosses and high- and low-body-weight rainbow trout. J Aquat Anim Health 14:39–44CrossRefGoogle Scholar
  11. Barnes MN, Landolt ML, Powell DB, Winton JR (1998) Purification of Piscirickettsia salmonis and partial characterization of antigens. Dis Aquat Org 33:33–41PubMedCrossRefGoogle Scholar
  12. Baumann L, Baumann P, Mandel M, Allen RD (1972) Taxonomy of aerobic marine eubacteria. J Bacteriol 110:402–429PubMedPubMedCentralGoogle Scholar
  13. Baumann L, Bowditch RD, Baumann P (1983) Description of Deleya gen. nov. created to accommodate the marine species Alcaligenes aestus, A. pacificus, A. cupidus, A. venustus and Pseudomonas marina. Int J Syst Bacteriol 33:793–802CrossRefGoogle Scholar
  14. Baya A, Toranzo AE, Núñez S, Barja JL, Hetrick FM (1990) Association of a Moraxella sp. and a reo-like virus with mortalities of striped bass, Morone saxatilis. Pathol Mar Sci:91–99Google Scholar
  15. Benediktsdóttir E, Helgason S, Sigurjónsdóttir H (1998) Vibrio spp. isolated from salmonids with shallow skin lesions and reared at low temperature. J Fish Dis 21:19–28CrossRefGoogle Scholar
  16. Benediktsdóttir E, Verdonck L, Spröer C, Helgason S, Swings J (2000) Characterization of Vibrio viscosus and Vibrio wodanis isolated from different geographical locations: a proposal for re-classification of Vibrio viscosus as Moritella viscose comb. nov. Int J Syst Evol Microbiol 50:479–488PubMedCrossRefGoogle Scholar
  17. Birkbeck TH, Laidler LA, Grant AN, Cox DI (2002) Pasteurella skyensis sp. nov., isolated from Atlantic salmon (Salmo salar L.). Int J Syst Evol Microbiol 52:699–704PubMedGoogle Scholar
  18. Birkbeck TH, Rennie S, Hunter D, Laidler LA, Wadsworth S (2004) Infectivity of a Scottish isolate of Piscirickettsia salmonis for Atlantic salmon Salmo salar and immune of salmon to this agent. Dis Aquat Org 60:97–103PubMedCrossRefGoogle Scholar
  19. Björnsdóttir B, Gudmundsdóttir S, Bambir SH, Magnadóttir B, Gudmundsdóttir BK (2004) Experimental infection of turbot, Scopthalmus maximus (L.), by Moritella viscosa, vaccination effort and vaccine-induced side-effects. J Fish Dis 27:645–655PubMedCrossRefGoogle Scholar
  20. Björnsdóttir B, Gudmundsdóttir T, Gudmundsdóttir BK (2011) Virulence properaties of Moritella viscosa extracellular products. J Fish Dis 34:333–343PubMedCrossRefGoogle Scholar
  21. Björnsdóttir B, Hjerde E, Bragason BT, Gudmundsdóttir T, Willasen NP, Gudmundsdóttir BK (2012) Identification of type VI secretion systems in Moritella viscosa. Vet Microbiol 158:436–442PubMedCrossRefGoogle Scholar
  22. Björnsson H, Marteinsson VP, Friõjónsson ÓH, Linke D, Benediktsdóttir E (2011) Isolation and characterization of an antigen from the fish pathogen Moritella viscosa. J Appl Microbiol 111:17–25PubMedCrossRefGoogle Scholar
  23. Branson EJ, Diaz-Munoz DN (1991) Description of a new disease condition occurring in farmed coho salmon, Oncorhynchus kisutch (Walbaum), in South America. J Fish Dis 14:147–156CrossRefGoogle Scholar
  24. Bravo S (1994) Piscirickettsiosis in freshwater. Bull Eur Assoc Fish Pathol 14:137–138Google Scholar
  25. Casanova A, Obreque CJR, Gaggero A, Landskron E, Sandino GAM, Jashés MM (2003) Electrophoretic analysis of ITS from Piscirickettsia salmonis Chilean isolates. FEMS Microbiol Lett 225:173–176PubMedCrossRefGoogle Scholar
  26. Cecchini F, Iacumin L, Fontanot M, Comi G, Manzano M (2012) Identification of the unculturable bacteria Candidatus arthromitus in the intestinal content of trouts using Dot blot and Southern blot techniques. Vet Microbiol 156:389–394PubMedCrossRefGoogle Scholar
  27. Chen S-C, Tung M-C, Chen S-P, Tsai J-F, Wang P-C, Chen R-S, Lin S-C, Adams A (1994) Systematic granulomas caused by a rickettsia-like organism in Nile tilapia, Oreochronius niloticus (L.), from southern Taiwan. J Fish Dis 17:591–599CrossRefGoogle Scholar
  28. Chen MF, Yun S, Marty GD, McDowell TS, House ML, Appersen JA, Guenther TA, Arkush KD, Hedrick RP (2000a) A Piscirickettsia salmonis-like bacterium associated with mortalities of white seabass Atraroscion nobilis. Dis Aquat Org 43:117–126PubMedCrossRefGoogle Scholar
  29. Chen S-C, Wang P-C, Tung M-C, Thompson KD, Adams A (2000b) A Piscirickettsia salmonis-like organism in grouper, Epinephelus melanostigma, in Taiwan. J Fish Dis 23:415–418CrossRefGoogle Scholar
  30. Chern RS, Chao CB (1994) Outbreaks of disease caused by rickettsia-like organism in cultured tilapias in Taiwan. Fish Pathol 29:61–71CrossRefGoogle Scholar
  31. Colquhoun DJ, Hovland H, Hellberg H, Haug T, Nilsen H (2004) Moritella viscosa isolated from farmed Atlantic cod (Gadus morhua). Bull Eur Assoc Fish Pathol 24:109–114Google Scholar
  32. Comps M, Raymond JC, Plassiart GN (1996) Rickettsia-like organism infecting juvenile sea-bass Dicentrarchus labrax. Bull Eur Assoc Fish Pathol 16:30–33Google Scholar
  33. Corbeil S, McColl KA, Crane MSJ (2003) Development of a Taqman quantitative PCR assay for the identification of Piscirickettsia salmonis. Bull Eur Assoc Fish Pathol 23:95–101Google Scholar
  34. Corbeil S, Hyatt AD, Crane MSJ (2005) Characterisation of an emerging rickettsia-like organism in Tasmanian farmed Atlantic salmon Salmo salar. Dis Aquat Org 64:37–44PubMedCrossRefGoogle Scholar
  35. Corsaro D, Work TM (2012) ‘Candidatus Renichlamydia luyjani’, a Gram-negative bacterium in internal organs of blue-striped snapper, Lutjanus kasmira from Hawaii. Dis Aquat Org. doi:103354/dao02441Google Scholar
  36. Coyne R, Smith P, Dalsgaard I, Nilsen H, Kongshaug H, Bergh Ø, Samuelsen O (2006) Winter ulcer disease of post-smolt Atlantic salmon: an unsuitable case for treatment? Aquaculture 253:171–178CrossRefGoogle Scholar
  37. Cusack RR, Groman DB, Jones SRM (2002) Rickettsial infection in farmed Atlantic salmon in eastern Canada. Can Vet J – Revue Veterinaire Canadienne 43:435–440PubMedGoogle Scholar
  38. Cvitanich J, Garate O, Smith CE (1991) The isolation of a rickettsia-like organism causing disease and mortality in Chilean salmonids and its confirmation by Koch’s postulate. J Fish Dis 14:121–145CrossRefGoogle Scholar
  39. Del-Pozo J, Crumlish M, Ferguson HW, Turnbull JF (2009) A retrospective cross-sectional study on “Candidatus Arthromitus” associated rainbow trout gastroenteritis (RTGE) in the UK. Aquaculture 290:22–27CrossRefGoogle Scholar
  40. Del-Pozo J, Turnbull J, Ferguson H, Crumlish M (2010) A comparative molecular study of the presence of “Candidatus Arthromitus” in the digestive system of rainbow trout, Oncorhynchus mykiss (Walbaum), healthy and affected with rainbow trout gastroenteritis. J Fish Dis 33:241–250PubMedCrossRefGoogle Scholar
  41. Dobson SJ, Franzmann PD (1996) Unification of the genera Deleya (Baumann et al 1983), Halomonas (Vreeland et al. 1980) and Halovibrio (Robinson and Gibbons, 1952) into a single genus, Halomonas, and placement of the genus Zymobacter in the family Halomonadaceae. Int J Syst Bacteriol 46:550–558CrossRefGoogle Scholar
  42. Draghi A, Popov VL, Kahl MM, Stanton JB, Brown CC, Tsongalis GJ et al (2004) Characterization of ‘Candidatus Piscichlamydia salmonis’ (order Chlamydiales), a Chlamydia-like bacterium associated with epitheliocystis in farmed Atlantic salmon (Salmo salar). J Clin Microbiol 42:5286–5297PubMedPubMedCentralCrossRefGoogle Scholar
  43. Draghi A, Bebak J, Daniels S, Tulman ER, Geary SJ, West AB, Popov VL, Frasca S (2010) Identification of ‘Candidatus Piscichlamydia salmonis’ in Arctic charr Salvelinus alpinus during a survey of charr production facilities in North America. Dis Aquat Org 89:39–49PubMedCrossRefGoogle Scholar
  44. Fehr A, Walther E, Schmidt-Posthaus H, Nufer L, Wilson A, Svercel M, Richter D, Segner H, Pospischil A, Vaughan L (2013) Candidatus Syngnamydia Venezia, a novel member of the phylum Chlamydiae from the broad nosed pipefish, Syngnathus typhle. PLOS One 8. doi: 10.1371/journal.pone.0070853 Google Scholar
  45. Fryer JL, Lannan CN, Garcés LH, Larenas JJ, Smith PA (1990) Isolation of a rickettsiales-like organism from diseased coho salmon (Oncorhynchus kisutch) in Chile. Fish Pathol 25:107–114CrossRefGoogle Scholar
  46. Fryer JL, Lannan CN, Giovannoni SJ, Wood ND (1992) Piscirickettsia salmonis gen. nov., the causative agent of an epizootic disease in salmonid fishes. Int J Syst Bacteriol 42:120–126PubMedCrossRefGoogle Scholar
  47. Gaggero A, Castro H, Sandino AM (1995) First isolation of Piscirickettsia salmonis from coho salmon, Oncorhynchus kisutch (Walbaum), and rainbow trout, Oncorhynchus mykiss (Walbaum), during the freshwater stage of their life cycle. J Fish Dis 18:277–279CrossRefGoogle Scholar
  48. Garcés LH, Larenas JJ, Smith PA, Sandino S, Lannan CN, Fryer JL (1991) Infectivity of a rickettsia isolated from coho salmon (Oncorhynchus kisutch). Dis Aquat Org 11:93–97CrossRefGoogle Scholar
  49. Gillespie NC (1981) A numerical taxonomic study of Pseudomonas -like bacteria isolated from fish in southeastern Queensland and their association with spoilage. J Appl Bacteriol 50:29–44CrossRefGoogle Scholar
  50. Greger E, Goodrich T (1999) Vaccine development for winter ulcer disease, Vibrio viscosus, in Atlantic salmon, Salmo salar L. J Fish Dis 22:193–199CrossRefGoogle Scholar
  51. Grove S, Reitan LJ, Lunder T, Colquhoun D (2008) Real-time PCR detection of Moritella viscosa, the likely causal agent of winter-ulcer in Atlantic salmon Salmo salar and rainbow trout Oncorhynchus mykiss. Dis Aquat Org 82:105–109PubMedCrossRefGoogle Scholar
  52. Grove S, Wiik-Nielsen CR, Lunder T, Tunsjø HS, Tandstad NM, Reitan LJ, Marthinussen A, Sørgaard M, Olsen AB, Colquhoun DJ (2010) Previously unrecognised division within Moritella viscosa isolated from fish farmed in the North Atlantic. Dis Aquat Org 93:51–61PubMedCrossRefGoogle Scholar
  53. Gudmundsdóttir BK, Björnsdóttir B, Gudmundsdóttir S, Bambir SH (2006) A comparative study of susceptibility and induced pathology of cod, Gadus morhua (L.), and halibut, Hippoglossus hippoglossus (L.), following experimental infection with Moritella viscosa. J Fish Dis 29:481–487PubMedCrossRefGoogle Scholar
  54. Heath S, Pak S, Marshall S, Prager EM, Orrego C (2000) Monitoring Piscirickettsia salmonis by denaturant gel electrophoresis and competitive PCR. Dis Aquat Org 41:19–29PubMedCrossRefGoogle Scholar
  55. Heidarsdóttir KJ, Gravningen K, Benediktsdóttir E (2008) Antigen profiles of the fish pathogen Moritella viscosa and protection in fish. J Appl Microbiol 104:944–951PubMedCrossRefGoogle Scholar
  56. Henríquez V, Rojas MV, Marshall SH (2003) An alternative efficient procedure for purification of the obligate intracellular fish bacterial pathogen Piscirickettsia salmonis. Appl Environ Microbiol 69:6268–6271PubMedPubMedCentralCrossRefGoogle Scholar
  57. Henriquez M, González E, Marshall SH, Henríquez V, Gómez FA, Martinez I, Altamirano C (2013) A novel liquid medium for the efficient growth of the salmonid pathogen Piscirickettsia salmonis and optimization of culture condition. PLOS One 8. doi: 10.1371/journal.pone.0071830 Google Scholar
  58. Horsley RW (1973) The bacterial flora of the Atlantic salmon (Salmo salar L.) in relation to its environment. J Appl Bacteriol 36:337–386CrossRefGoogle Scholar
  59. House ML, Bartholomew JL, Winton JR, Fryer JL (1999) Relative virulence of three isolates of Piscirickettsia salmonis for coho salmon Oncorhynchus kisutch. Dis Aquat Org 35:107–113PubMedCrossRefGoogle Scholar
  60. Iida T, Sorimachi M (1994) Cultural characteristics of the bacterium causing jaundice of yellowtail, Seriola quinqueradiata. Fish Pathol 29:25–28Google Scholar
  61. Isla A, Haussmann D, Vera T, Kausel G, Figueroa J (2014) Identification of the clpB and bipA genes and an evaluation of their expression as related to intracellular survival for the bacterial pathogen Piscirickettsia salmonis. Vet Microbiol 173:390–394PubMedCrossRefGoogle Scholar
  62. Jones MW, Cox DI (1999) Clinical disease in sea farmed Atlantic salmon (Salmo salar) associated with a member of the family Pasteurellaceae – a case history. Bull Eur Assoc Fish Pathol 19:75–78Google Scholar
  63. Jones SRM, Markham RJF, Groman DB, Cusack RR (1998) Virulence and antigenic characteristics of a cultured Rickettsiales-like organism isolated from farmed Atlantic salmon Salmo salar in eastern Canada. Dis Aquat Org 33:25–31PubMedCrossRefGoogle Scholar
  64. Juni E (2005) Genus II. Acinetobacter Brisou and Prévot 1954, 727AL. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol. 2. The Proteobacteria, Part B The Gammaproteobacteria. Springer, New York, pp 425–437Google Scholar
  65. Juni E, Bøvre K (2005) Genus I. Moraxella Lwoff 1939, 173, emend. Henriksen and Bøvre 1968, 391AL. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol. 2. The Proteobacteria, Part B The Gammaproteobacteria. Springer, New York, pp 417–425Google Scholar
  66. Karatas S, Mikalsen J, Steinum TM, Taksdal T, Bordevik M, Colquhoun DJ (2008) Real time PCR detection of Piscirickettsia salmonis from formalin-fixed paraffin-embedded tissues. J Fish Dis 31:747–753PubMedCrossRefGoogle Scholar
  67. Karlsen M, Nylund A, Watanabe K, Helvik JV, Nylund S, Plarre H (2008) Characterization of ‘Candidatus Clavochlamydia salmonicola’: an intracellular bacterium infecting salmonid fish. Environ Microbiol 10:208–218PubMedGoogle Scholar
  68. Karlsen C, Vanberg C, Mikkelsen H, Sorum H (2014a) Co-infection of Atlantic salmon (Salmo salar), by Moritella viscosa and Aliivibrio wodanis, development of disease and host colonization. Vet Microbiol 171:112–121PubMedCrossRefGoogle Scholar
  69. Karlsen C, Ellingsen AB, Wiik-Nielsen C, Winther-Larsen HC, Colquhoun DJ, Sørum H (2014b) Host specific and clade dependent distribution of putative virulence genes in Moritella viscosa. Microb Pathog 77:53–65PubMedCrossRefGoogle Scholar
  70. Kersters K, De Ley J (1984) Genus Alcaligenes Castellani and Chalmers 1919, 936AL. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol I. Williams and Wilkins, Baltimore, pp 361–373Google Scholar
  71. Khoo L, Dennis PM, Lewbat GA (1995) Rickettsia-like organisms in the blue-eyed plecostomus, Panaque suttoni (Eigenmann & Eigenmann). J Fish Dis 18:157–163CrossRefGoogle Scholar
  72. Kirchhoff H, Rosengarten R (1984) Isolation of a motile mycoplasma from fish. J Gen Microbiol 130:2439–2445PubMedGoogle Scholar
  73. Kirchhoff H, Beyenne P, Fischer M, Flossdorf J, Heitmann J, Khattab B, Lopatta D, Rosengarten R, Seidel G, Yousef C (1987) Mycoplasma mobile sp. nov., a new species from fish. Int J Syst Bacteriol 37:192–197CrossRefGoogle Scholar
  74. Knudsen G, Sørum H, Press CML, Olafsen JA (1999) In situ adherence of Vibrio spp. to cryosections of Atlantic salmon, Salmo salar L., tissue. J Fish Dis 22:409–418CrossRefGoogle Scholar
  75. Kobayashi T, Imai M, Kawaguchi Y (2005) A Gram-negative bacillus infection causing gill lesions in cultured rockfish Sebastes schlegeli. Fish Pathol 40:143–145CrossRefGoogle Scholar
  76. Kozinska A, Pazdziori E, Pekala A, Niemczuk W (2014) Acinetobacter johnsonii and Acinetobacter lwoffii – the emerging fish pathogen. Bull Vet Inst Pulawy 58:193–199CrossRefGoogle Scholar
  77. Kubilay A, Ciftci S, Yildirim P, Didinen BI, Metin S, Demirkan T, Ozen MR, Oidtmann R (2014) First observation of Red Mark Syndrome (RMS) in cultured rainbow trout (Oncorhynchus mykiss Walbaum, 1792) in Turkey. Bull Eur Assoc Fish Pathol 34:95–101Google Scholar
  78. Kusuda R, Yokoyama J, Kawai K (1986) Bacteriological study on cause of mass mortalities in cultured black sea bream fry. Bull Jpn Soc Sci Fish 52:1745–1751CrossRefGoogle Scholar
  79. Kuzuk MA, Thornton JC, Kay WW (1996) Antigenic characterization of the salmonid pathogen Piscirickettsia salmonis. Infect Immun 64:5205–5210Google Scholar
  80. Lannan CN, Fryer JL (1991) Recommended methods for inspection of fish for the salmonid rickettsia. Bull Eur Assoc Fish Pathol 11:135–136Google Scholar
  81. Lannan CN, Fryer JL (1994) Extracellular survival of Piscirickettsia salmonis. J Fish Dis 17:545–548CrossRefGoogle Scholar
  82. Lannan CN, Ewing SA, Fryer JL (1991) A fluorescent antibody test for detection of the rickettsia causing disease in Chilean salmonids. J Aquat Anim Health 3:229–234CrossRefGoogle Scholar
  83. Larenas J, Astorga C, Contreras J, Garcés H, Fryer J, Smith P (1996) Rapid detection of Piscirickettsia salmonis using microwave irradiation. Fish Pathol 31:231–232CrossRefGoogle Scholar
  84. Larenas JJ, Batholomew J, Troncoso O, Fernández S, Ledezina H, Sandoval N, Vera P, Contreras J, Smith P (2003) Experimental vertical transmission of Piscirickettsia salmonis and in vitro study of attachment and mode of entrance into the fish ovum. Dis Aquat Org 56:25–30PubMedCrossRefGoogle Scholar
  85. Lee JV, Gibson DM, Shewan JM (1977) A numerical taxonomic study of some Pseudomonas – like marine bacteria. J Gen Microbiol 98:439–451CrossRefGoogle Scholar
  86. Lio-Po GD, Albright LJ, Michel C, Leano EM (1998) Experimental induction of lesions in snakeheads (Ophicephalus striatus) and catfish (Clarias batrachus) with Aeromonas hydrophila, Aquaspirillum sp., Pseudomonas sp. and Streptococcus sp. J Appl Ichthyol 14:75–79CrossRefGoogle Scholar
  87. Lloyd SJ, LaPatra SE, Snekvik KR, St-Hilaire S, Cain KD, Call DR (2008) Strawberry disease lesions in rainbow trout from southern Idaho are associated with DNA from a Rickettsia-like organism. Dis Aquat Org 82:111–118PubMedCrossRefGoogle Scholar
  88. Lloyd SJ, LaPatra SE, Snekvik KR, Cain KD, Call DR (2011) Quantitative PCR demonstrates a positive correlation between a Rickettsia-like organism and severity of strawberry disease lesions in rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis 34:701–709PubMedCrossRefGoogle Scholar
  89. Logan NA (1989) Numerical taxonomy of violet-pigmented, Gram-negative bacteria and description of Iodobacter fluviatile gen. nov., comb. nov. Int J Syst Bacteriol 39:450–456CrossRefGoogle Scholar
  90. Lunder T, Evensen Ø, Holstad G, Håstein T (1995) ‘Winter ulcer’ in the Atlantic salmon Salmo salar. Pathological and bacteriological investigations and transmission experiments. Dis Aquat Org 23:39–49CrossRefGoogle Scholar
  91. Lunder T, Sørum H, Holstad G, Steigerwalt AG, Mowinckel P, Brenner DJ (2000) Phenotypic and genotypic characterization of Vibrio viscosus sp. nov. and Vibrio wodanis sp. nov. isolated from Atlantic salmon (Salmo salar) with ‘winter ulcer’. Int J Syst Evol Microbiol 50:427–450PubMedCrossRefGoogle Scholar
  92. MacDonell MT, Swartz DG, Ortiz-Conde BA, Last GA, Colwell RR (1986) Ribosomal RNA phylogenies for the vibrio-enteric group of eubacteria. Microbiol Sci 3:172–179PubMedGoogle Scholar
  93. Maher M, Palmer R, Gannon F, Smith T (1995) Relationship of a novel bacterial fish pathogen to Streptobacillus moniliformis and the fusobacteria group, based on 16S ribosomal RNA analysis. Syst Appl Microbiol 18:79–84CrossRefGoogle Scholar
  94. Marshall S, Heath S, Henríquez V, Orrego C (1998) Minimally invasive detection of Piscirickettsia salmonis in cultivated salmonids via the PCR. Appl Environ Microbiol 64:3066–3069PubMedPubMedCentralGoogle Scholar
  95. Mauel MJ, Fryer JL (2001) Amplification of a Piscirickettsia salmonis-like 16S rDNA product from bacterioplankton DNA collected from the coastal waters of Oregon, USA. J Aquat Anim Health 13:280–284CrossRefGoogle Scholar
  96. Mauel MJ, Giovannoni SJ, Fryer JL (1996) Development of polymerase chain reaction assays for detection, identification and differentiation of Piscirickettsia salmonis. Dis Aquat Org 26:189–195CrossRefGoogle Scholar
  97. Mauel MJ, Miller DL, Frazier K, Liggett AD, Styer L, Montgomery-Brock D, Brock J (2003) Characterization of a piscirickettsiosis-like disease in Hawaiian tilapia. Dis Aquat Org 53:249–255PubMedCrossRefGoogle Scholar
  98. McCarthy Ú, Steiropoulos NA, Thompson KD, Adams A, Ellis AE, Ferguson HW (2005) Confirmation of Piscirickettsia salmonis in European sea bass Dicentrarchus labrax and phylogenetic comparison with salmonid strains. Dis Org 64:107–119CrossRefGoogle Scholar
  99. McIntosh D, Austin B (1990) Recovery of cell wall deficient forms (L-forms) of the fish pathogens Aeromonas salmonicida and Yersinia ruckeri. Syst Appl Microbiol 13:378–381CrossRefGoogle Scholar
  100. Metselaar M, Thompson KD, Gratacap RML, Kik MJL, LePatra SE, Lloyd SJ, Call DR, Smith PD, Adams A (2010) Association of red-mark syndrome with a Rickettsia-like organism and its connection with strawberry disease in the USA. J Fish Dis 33:849–858PubMedCrossRefGoogle Scholar
  101. Michel C, Bernardet J-F, Daniel P, Chilmonczyk S, Urdaci M, De Kinkelin P (2002) Clinical and aetiological aspects of a summer enteritic syndrome associated with the sporulating segmented filamentous bacterium, ‘Candidatus Arthromitus’ in farmed rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis 25:533–543CrossRefGoogle Scholar
  102. Mitchell SO, Steinum TM, Toenshoff ER, Agnar Kvellestad A, Falk K, Horn M, Colquhoun DJ (2013) ‘Candidatus Branchiomonas cysticola’ is a common agent of epitheliocysts in seawater-farmed Atlantic salmon Salmo salar in Norway and Ireland. Dis Aquat Org 103:35–43PubMedCrossRefGoogle Scholar
  103. Moss MO, Ryall C (1980) The genus Chromobacterium. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The Prokaryotes a handbook on habitats, isolation and identification of bacteria, vol 2. Springer, Berlin, pp 1355–1364Google Scholar
  104. Nelson EJ, Ghiorse WC (1999) Isolation and identification of Pseudoalteromonas piscicida strain Cura-d associated with diseased damselfish (Pomacentridae) eggs. J Fish Dis 22:253–260CrossRefGoogle Scholar
  105. Olsen AB, Melby HP, Speilberg L, Evensen Ø, Håstein T (1997) Piscirickettsia salmonis infection in Atlantic salmon Salmo salar in Norway – epidemiological, pathological and microbiological findings. Dis Aquat Org 31:35–48CrossRefGoogle Scholar
  106. Palmer R, Drinan E, Murphy T (1994) A previously unknown disease of farmed Atlantic salmon: pathology and establishment of bacterial aetiology. Dis Aquat Org 19:7–14CrossRefGoogle Scholar
  107. Palmer R, Ruttledge M, Callanan K, Drinan E (1997) A piscirickettsiosis-like disease in farmed Atlantic salmon in Ireland – isolation of the agent. Bull Eur Assoc Fish Pathol 17:68–72Google Scholar
  108. Pekala A, Kozinska A, Pazdzior E, Glowacka H (2015) Phenotypical and genotypical characterization of Shewanella putrefaciens strains isolated from diseased freshwater fish. J Fish Dis 38:283–293PubMedCrossRefGoogle Scholar
  109. Polkinghorne A, Schmidt-Posthaus H, Meijer A, Lehner A, Vaughan L (2010) Novel Chlamydiales associated with epitheliocystis in a leopard shark Triakis semifasciata. Dis Aquat Org 91:75–81PubMedCrossRefGoogle Scholar
  110. Pujalte MJ, Sitjà-Bobadilla A, Macián MC, Álvarez-Pellitero P, Garay E (2007) Occurrence and virulence of Pseudoalteromonas spp. in cultured gilthead sea bream (Sparus aurata L.) and European sea bass (Dicentrarchus labrax L.). Molecular and phenotypic characterisation of P. undina strain U58. Aquaculture 271:47–53CrossRefGoogle Scholar
  111. Pulgar R, Hodar C, Travisany D, Zuniga A, Dominguez C, Maas A, Gonzalez M, Cambiazo, V (2015) Transcriptional response of Atlantic salmon families to Pisciricketttsia salmonis infection highlights the relevance of the iron-deprivation defence system. BMC Genomics 16, Article No: 495.Google Scholar
  112. Ramirez R, Gomez FA, Marshall SH (2015) The infection process of Piscirickettsia salmonis in fish macrophages is dependent upon interaction with host-cell clathrin and actin. FEMS Microbiol Lett 362. doi:  10.1093/femsle/fnu012 Google Scholar
  113. Reid HI, Griffen AA, Birkbeck TH (2004) Isolates of Piscirickettsia salmonis from Scotland and Ireland show evidence of clonal diversity. Appl Environ Microbiol 70:4393–4397PubMedPubMedCentralCrossRefGoogle Scholar
  114. Roald SO (1977) Effects of sublethal concentrations of lignosulphonates on growth, intestinal microflora and some digestive enzymes of rainbow trout (Salmo gairdneri). Aquaculture 12:327–335CrossRefGoogle Scholar
  115. Roald SO, Hastein T (1980) Infection with an acinetobacter-like bacterium in Atlantic salmon (Salmo salar) broodfish. In: Ahne W (ed) Fish diseases, third COPRAQ-session. Springer, Berlin, pp 154–156CrossRefGoogle Scholar
  116. Rodger HD, Drinan EM (1993) Observation of a rickettsia-like organism in Atlantic salmon, Salmo salar L., in Ireland. J Fish Dis 16:361–369CrossRefGoogle Scholar
  117. Rojas ME, Galleguillos M, Diaz S, Machura A, Carbonero A, Smith PA (2013) Evidence of exotoxin secretion of Piscirickettsia salmonis, the causative agent of piscirickettsiosis. J Fish Dis 36:703–709PubMedCrossRefGoogle Scholar
  118. Saeed MO, Alamoudi MM, Al-Harbi AH (1987) A Pseudomonas associated with disease in cultured rabbitfish Siganus rivulatus in the Red Sea. Dis Aquat Org 3:177–180CrossRefGoogle Scholar
  119. Salte R, Rørvik K-A, Reed E, Norberg K (1994) Winter ulcers of the skin in Atlantic salmon, Salmo salar L.: pathogenesis and possible aetiology. J Fish Dis 17:661–665CrossRefGoogle Scholar
  120. Schäfer J-W, Alvarado V, Enriquez R, Monrás M (1990) The “coho salmon syndrome” (CSS): a new disease in Chilean salmon reared in sea water. Bull Eur Assoc Fish Pathol 10:130Google Scholar
  121. Senapin S, Dong TH, Meemetta W, Siriphongphaew A, Charoensapsri W, Santimanawong W, Turner WA, Rodkhum C, Withyachumnarnkul B, Vanichviriyakit R (2016) Hahella chejuensis is the aetiological agent of a novel red egg disease in tilapia (Oreochromis spp.) hatcheries in Thailand. Aquaculture. doi: 10.1016/j.aquaculture.2015.12.013 Google Scholar
  122. Shewan JM (1961) The microbiology of sea-water fish. In: Bergstöm G (ed) Fish as food, vol 1. Academic, London, pp 487–560CrossRefGoogle Scholar
  123. Skarmeta AM, Henriquez V, Zahr M, Orrego C, Marshall SH (2000) Isolation of a virulent Piscirickettsia salmonis from the brain of naturally infected coho salmon. Bull Eur Assoc Fish Pathol 20:261–264Google Scholar
  124. Smith PA, Lannan CN, Garces LH, Jarpa M, Larenas J, Caswell-Reno P, Whipple M, Fryer JL (1995) Piscirickettsiosis: a bacterin field trial in coho salmon (Oncorhynchus kisutch). Bull Eur Assoc Fish Pathol 14:137–141Google Scholar
  125. Smith PA, Pizarro P, Ojeda P, Contreras J, Oyanedel S, Larenas J (1999) Routes of entry of Piscirickettsia salmonis in rainbow trout Oncorhynchus mykiss. Dis Aquat Org 37:165–172PubMedCrossRefGoogle Scholar
  126. Smith PA, Rojas ME, Guajardo A, Contreras J, Morales MA, Larenas J (2004) Experimental infection of coho salmon Oncorhynchus kisutch by exposure of skin, gills and intestine with Piscirickettsia salmonis. Dis Aquat Org 61:53–57PubMedCrossRefGoogle Scholar
  127. Sneath PHA (1984) Genus Chromobacterium De Ley, Segers and Gillis 1978, 164AL. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 1. Williams and Wilkins, Baltimore, pp 376–377Google Scholar
  128. Sorimachi M, Maeno Y, Nakajima K, Inouye K, Inui Y (1993) Causative agent of jaundice of yellowtail, Seriola quinqueradiata. Fish Pathol 28:119–124CrossRefGoogle Scholar
  129. Steigen A, Nylund A, Kalsbakk E, Akoll P, Fiksdal IU, Nylund S, Odong R, Plarre H, Semyalo R, Skar C (2013) ‘Cand. Actinochlamydia clariae’gen. nov., sp. nov., a unique intracellular bacterium causing epitheliocystis in catfish (Clarias gariepinus) in Uganda. PLOS One 8. doi: 10.1186/1471-2180-12-266 Google Scholar
  130. Steinum T, Sjåstad K, Falk K, Kvellestad A, Colquhoun DJ (2009) A RT-DGGE survey of gill-associated bacteria in Norwegian seawater-reared Atlantic salmon suffering proliferative gill inflammation. Aquculture 293:172–179CrossRefGoogle Scholar
  131. Stride MC, Polkinghorne A, Miller TL, Nowak BF (2013) Molecular characterization of “Candidatus Simichlamydia latridicola” gen. nov., sp nov (Chlamydiales: “Candidatus Parilichlamydiaceae”, a novel Chlamydia-like epitheliocystis agent in the striped trumpeter, Latris lineata (Forster). Appl Environ Microbiol 79:4914–4920PubMedPubMedCentralCrossRefGoogle Scholar
  132. Tapia-Cammas D, Yañez A, Arancibia G, Toranzo AE, Avendaño-Herrera R (2011) Multiplex PCR for the detection of Piscirickettsia salmonis, Vibrio anguillarum, Aeromonas salmonicida and Streptococcus phocae in Chilean marine farms. Dis Aquat Org 97:135–142PubMedCrossRefGoogle Scholar
  133. Timur G, Erkan M, Yardimci RE, Ercan MD, Canak O, Urku C (2013) Light and electron microscopic study of Rickettsia-like organisms causing systemic granulomas in farmed sea bass (Dicentrarchus labrax). Isr J Aquacult Bamidgeh 65:1–7Google Scholar
  134. Tobar JA, Jerez S, Caruffo M, Bravo C, Contreras F, Bucarey SA, Harel M (2011) Oral vaccination of Atlantic salmon (Salmo salar) against salmonid rickettsial disease. Vaccine 29:2336–2340PubMedCrossRefGoogle Scholar
  135. Tobar I, Arncibia S, Torres C, Vera V, Soto P, Carrasco C, Alvarado M, Neira E, Arcos S, Tobar JA (2015) Successive oral immunizations against Piscirickettsia salmonis and infectious salmon anemia virus are required to maintain a long-term protection in farmed salmonids. Front Immunol 6. doi: 10.3389/fimmu.2015.00244
  136. Toenshoff ER, Kvellestad A, Mitchell SO, Steinum T, Kalk K, Colquhoun DJ, Horn M (2012) A novel betaproteobacterial agent of gill epitheliocystis in seawater farmed Atlantic salmon (Salmo salar). PLOS One 7. doi: 10.1371/journal.pone.0032696 Google Scholar
  137. Trust TJ, Sparrow RAH (1974) The bacterial flora in the alimentary tract of freshwater salmonid fishes. Can J Microbiol 20:1219–1228PubMedCrossRefGoogle Scholar
  138. Tunsjø HS, Wiik-Nielsen CR, Grove S, Skjerve E, Sørum H, Abée-Lund TM (2011) Putative virulence genes in Moritella viscosa: activity during in vitro inoculation and in vivo infection. Microb Pathog 50:286–292PubMedCrossRefGoogle Scholar
  139. Urakawa H, Kita-Tsukamoto K, Stevens SE, Ohwada K, Colwell RR (1998) A proposal to transfer Vibrio marinus (Russell 1891) to a new genus Moritella gen. nov. as Moritella marina comb. nov. FEMS Microbiol Lett 165:373–378PubMedCrossRefGoogle Scholar
  140. Valheim M, Håstein T, Myhr E, Speilberg L, Ferguson HW (2000) Varracalbmi: a new bacterial panophthalmitis in farmed Atlantic salmon, Salmo salar L. J Fish Dis 23:61–70CrossRefGoogle Scholar
  141. Vedros NA (1984) Genus I Neisseria Trevisan 1885, 105AL. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 1. Williams and Wilkins, Baltimore, pp 290–296Google Scholar
  142. Venegas CA, Contreras JR, Larenas JJ, Smith PA (2004) DNA hybridization assays for the detection of Piscirickettsia salmonis in salmonid fish. J Fish Dis 27:431–435PubMedCrossRefGoogle Scholar
  143. Wolf K (1981) Chlamydia and rickettsia of fish. Fish Health News 10:1–5Google Scholar
  144. Xu (1975) Studies on the gill diseases of the grass carp (Ctenopharynogodon idelluls). 1. Isolation of a myxobacterial pathogen. Acta Hydrobiol Sin 5:315–329Google Scholar
  145. Yañez AJ, Valenzuela K, Silva H, Retamales J, Romero A, Enriquez R, Figueroa J, Claude A, Gonzalez J, Avendaño-Herrera R, Carcamo JG (2012) Broth medium for the successful culture of the fish pathogen Piscirickettsia salmonis. Dis Aquat Org 97:197–205PubMedCrossRefGoogle Scholar
  146. Yuksel SA, Thompson KD, Ellis AE, Adams A (2001) Purification of Piscirickettsia salmonis and associated phage particles. Dis Aquat Org 44:231–235PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Brian Austin
    • 1
  • Dawn A. Austin
    • 2
  1. 1.Institute of AquacultureUniversity of StirlingStirlingUK
  2. 2.School of Life SciencesHeriot-Watt UniversityEdinburghUK

Personalised recommendations