Okkam Synapsis: Connecting Vocabularies Across Systems and Users

  • Stefano BortoliEmail author
  • Paolo Bouquet
  • Barbara Bazzanella
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9507)


In the past 10-15 years, a large amount of resources have been devoted to develop highly sophisticated and effective tools for automated and semi-automated schema-vocabulary-ontology matching and alignment. However, very little effort has been made to consolidate the outputs, in particular to share the resulting mappings with the community of researchers and practitioners, support a community-driven revision/evaluation of mappings and make them reusable. Yet, mappings are an extremely valuable asset, as they provide an integration map for the web of data and the “glue” for the Global Giant Graph envisaged by Tim Berners-Lee. Aiming at kicking-off a positive endeavor, we have developed Synapsis, a platform to support a community-driven lifecycle of contextual mappings across ontologies, vocabularies and schemas. Okkam Synapsis offers utilities to load, create, maintain, annotate, subscribe, and define levels of agreement over user-defined contextual mappings. Furthermore, in order to ease the development of Semantic (Web) applications, Synapsis supports the creation of sets of mappings associated with an application placeholder. On the one hand, this allows developers to easily create and manipulate all the mappings required for their own application without affecting other users. On the other hand, a measure of Sharedness for the mappings defined across application contexts is proposed to enable the implementation of ranking metrics that can be used to order the mappings managed through Synapsis. Aiming at supporting a growing number of users, Synapsis was positively tested to be scalable in the order of millions of mappings, performing experiments with synthetic data. Applying the Data-as-a-Service (DaaS) paradigm, the sets of mappings created and managed by Synapsis are also available through REST services, to further facilitate integration into applications working with heterogeneous data.


Target Concept Ontology Mapping Ontology Match Open Refine Identification Ontology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is partially supported by TAG CLOUD (Technologies lead to Adaptability and lifelong enGagement with culture throughout the CLOUD) FP7 EU Funded project, Grant agreement nr: 600924. This work has been partially funded by the Autonomous Province of Trento through SICRaS project (Legge 6/1999, DD n. 251).


  1. 1.
    Antoniou, G., van Harmelen, F.: A Semantic Web Primer. MIT Press, Cambridge (2004)Google Scholar
  2. 2.
    Berners-Lee, T., Hendler, J.A., Lassila, O.: The Semantic Web. Scientific American, May 2001.
  3. 3.
    Berners-Lee, T.: Design Issues - Linked Data. Published online, May 2007.
  4. 4.
    Bizer, C., Cyganiak, R., Heath, T.: How to publish linked data on the web. online tutorial, July 2007Google Scholar
  5. 5.
    Bortoli, S.: Knowledge Based Open Entity Matching. PhD thesis, International Doctoral School in ICT of the University of Trento (Italy) (2013)Google Scholar
  6. 6.
    Bortoli, S., Bouquet, P., Bazzanella, B.: An identification ontology for entity matching. In: Meersman, R., et al. (eds.) On the Move to Meaningful Internet Systems: OTM 2014 Workshops. LNCS, vol. 8842, pp. 587–596. Springer, Heidelberg (2011)Google Scholar
  7. 7.
    Bouquet, P., Stoermer, H., Niederee, C., Mana, A.: Entity name system: The backbone of an open and scalable web of data. In: Proceedings of the IEEE International Conference on Semantic Computing, ICSC 2008, pp. 554–561. IEEE Computer Society, August 2008Google Scholar
  8. 8.
    Bouquet, P., Giunchiglia, F., van Harmelen, F., Serafini, L., Stuckenschmidt, H.: C-OWL: contextualizing ontologies. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 164–179. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Measur. 20(1), 37–46 (1960)CrossRefGoogle Scholar
  10. 10.
    David, J., Euzenat, J., Scharffe, F., dos Santos, C.T.: The alignment appi 4.0. Semant. Web J. 2(1), 3–10 (2011)Google Scholar
  11. 11.
    Ellis, J.B., Hassanzadeh, O., Srinivas, K., Ward, M.J.: Collective ontology alignment. In: OM, pp. 219–220 (2013)Google Scholar
  12. 12.
    Euzenat, J.: Uncertainty in crowdsourcing ontology matching. In: OM, pp. 221–222 (2013)Google Scholar
  13. 13.
    Fleiss, J.L.: Measuring nominal scale agreement among many raters. Psychol. Bull. 76(5), 378–382 (1971)CrossRefGoogle Scholar
  14. 14.
    Fu, B., Noy, N.F., Storey, M.-A.: Indented tree or graph? a usability study of ontology visualization techniques in the context of class mapping evaluation. In: Alani, H., et al. (eds.) ISWC 2013, Part I. LNCS, vol. 8218, pp. 117–134. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Gangemi, A., Presutti, V.: Ontology design patterns. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies. International Handbooks on Information Systems, pp. 221–243. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., Schneider, L.: Sweetening ontologies with DOLCE. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 166–181. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Alani, H., Correndo, G.: Collaborative support for community data sharing. In: Proceedings of The 2nd Workshop on Collective Intelligence in Semantic Web and Social Networks (2008)Google Scholar
  18. 18.
    W3C OWL Working Group. Owl2 web ontology language: Document overview, 27 October 2009.
  19. 19.
    Guarino, N., Welty, C.: An overview of ontoclean. In: Staab, S., Studer, R. (eds.) The Handbook on Ontologies. International Handbooks on Information Systems, pp. 151–172. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Halpin, H., Hayes, P.J., McCusker, J.P., McGuinness, D.L., Thompson, H.S.: When owl:sameAs Isn’t the Same: an analysis of identity in linked data. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 305–320. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Hitzler, P., Kroetzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S.: OWL 2 Web Ontology Language Primer (Second edition). W3C (2012)Google Scholar
  22. 22.
    Landis, R.J., Koch, G.G.: The measurement of observer agreement for categorical data. Biometrics 33(1), 159–174 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Manola, F., Miller, E., McBride, B.: RDF 1.1 Primer. W3C, w3c working group note edition, June 2014Google Scholar
  24. 24.
    Markotschi, T., Völker, J.: Guess What?! human intelligence for mining linked data. In: Proceedings of the Workshop on Knowledge Injection into and Extraction from Linked Data (KIELD) at the International Conference on Knowledge Engineering and Knowledge Management (EKAW) (2010)Google Scholar
  25. 25.
    Noy, N.F., Griffith, N., Musen, M.A.: Collecting community-based mappings in an ontology repository. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 371–386. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  26. 26.
    Patel-Schneider, P.F., Hayes, P., Horrocks, I.: Web Ontology Language (OWL) Abstract Syntax and Semantics. Technical report W3C, February 2003.
  27. 27.
    Pavel, S., Euzenat, J.: Ontology matching: state of the art and future challenges. IEEE Trans. Knowl. Data Eng. 25(1), 158–176 (2013)CrossRefGoogle Scholar
  28. 28.
    Quine, W.: Ontological Relativity and Other Essays. Columbia University Press, New York (1969)Google Scholar
  29. 29.
    Raad, E., Evermann, J.: Is ontology alignment like analogy? - knowledge integration with lisa. In: Proceedings of Symposium on Applied Computing (SAC), Republic of Korea (2014)Google Scholar
  30. 30.
    Sarasua, C., Simperl, E., Noy, N.F.: CrowdMap: crowdsourcing ontology alignment with microtasks. In: Cudré-Mauroux, P., et al. (eds.) The Semantic Web - ISWC 2012. LNCS, pp. 525–541. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  31. 31.
    Serafini, L., Zanobini, S., Sceffer, S., Bouquet, P.: Matching hierarchical classifications with attributes. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 4–18. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  32. 32.
    Shvaiko, P., Euzenat, J.: Ten challenges for ontology matching. In: Meersman, R., Tari, Z. (eds.) On the Move to Meaningful Internet Systems: OTM 2008. LNCS, vol. 5332, pp. 1164–1182. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  33. 33.
    Thaler, S., Simperl, E., Siorpaes, K.: Spotthelink: playful alignment of ontologies. In: Proceedings of the ACM Symposium on Applied Computing, SAC 2011, pp. 1711–1712. ACM, New York, NY, USA (2011)Google Scholar
  34. 34.
    Tordai, A.: On Combining Alignment Techniques. PhD thesis, Vreije Universiteit Amsterdam, 03 December 2012Google Scholar
  35. 35.
    Tordai, A., van Ossenbruggen, J., Schreiber, G., Wielinga, B.: Let’s agree to disagree: on the evaluation of vocabulary alignment. In: Proceedings of the Sixth International Conference on Knowledge Capture, K-CAP 2011, pp. 65–72. ACM, New York, NY, USA (2011)Google Scholar
  36. 36.
    Verborgh, R., De Wilde, M.: Using OpenRefine. PACKT Publishing, Birmingham (2013)Google Scholar
  37. 37.
    Zhdanova, A.V., Shvaiko, P.: Community-driven ontology matching. In: Sure, Y., Domingue, J. (eds.) The Semantic Web: Research and Applications. LNCS, vol. 4011, pp. 34–49. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Stefano Bortoli
    • 1
    Email author
  • Paolo Bouquet
    • 1
    • 2
  • Barbara Bazzanella
    • 2
  1. 1.Okkam SRLTrentoItaly
  2. 2.University of Trento - DISITrentoItaly

Personalised recommendations