Wikis and Collaborative Systems for Large Formal Mathematics

  • Cezary Kaliszyk
  • Josef UrbanEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9507)


In the recent years, there have been significant advances in formalization of mathematics, involving a number of large-scale formalization projects. This naturally poses a number of interesting problems concerning how should humans and machines collaborate on such deeply semantic and computer-assisted projects. In this paper we provide an overview of the wikis and web-based systems for such collaboration involving humans and also AI systems over the large corpora of fully formal mathematical knowledge.


Formal Text Proof Assistant Automate Theorem Prove Version Control System Interactive Theorem Prove 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The following colleagues have collaborated with us on various aspects of formal wikis and on a number of formal wiki-related systems mentioned in this paper: Mark Adams, Jesse Alama, Grzegorz Bancerek, Kasper Brink, Johan Commelin, Pierre Corbineau, Thibault Gauthier, Herman Geuvers, Mihnea Iancu, James McKinna, Michael Kohlhase, Christoph Lange, Lionel Mamane, Florian Rabe, Piotr Rudnicki, Geoff Sutcliffe, Carst Tankink, Jiri Vyskocil and Freek Wiedijk. Thanks to the anonymous SWCS referees for their valuable comments.


  1. 1.
    The QED Manifesto. In: Bundy, A. (ed.) CADE 1994. LNCS, vol. 814, pp. 238–251. Springer, Heidelberg (1994)Google Scholar
  2. 2.
    Afshar, S.K., Siddique, U., Mahmoud, M.Y., Aravantinos, V., Seddiki, O., Hasan, O., Tahar, S.: Formal analysis of optical systems. Math. Comput. Sci. 8(1), 39–70 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Alama, J., Brink, K., Mamane, L., Urban, J.: Large formal wikis: issues and solutions. In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.) MKM 2011 and Calculemus 2011. LNCS, vol. 6824, pp. 133–148. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Alama, J., Mamane, L., Urban, J.: Dependencies in formal mathematics: applications and extraction for Coq and Mizar. In: Jeuring et al. [24], pp. 1–16Google Scholar
  5. 5.
    Asperti, A., Ricciotti, W.: A web interface for Matita. In: Jeuring et al. [24], pp. 417–421Google Scholar
  6. 6.
    Aspinall, D.: Proof general: a generic tool for proof development. In: Graf, S., Schwartzbach, M. (eds.) TACAS 2000. LNCS, vol. 1785, pp. 38–43. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Autexier, S., Calmet, J., Delahaye, D., Ion, P.D.F., Rideau, L., Rioboo, R., Sexton, A.P. (eds.): AISC/Calculemus/MKM 2010. LNCS, vol. 6167. Springer, Heidelberg (2010)Google Scholar
  8. 8.
    Bancerek, G., Rudnicki, P.: A Compendium of Continuous Lattices in MIZAR. J. Autom. Reasoning 29(3–4), 189–224 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Baumeister, J., Reutelshoefer, J., Puppe, F.: KnowWE: a semantic Wiki for knowledge engineering. Appl. Intell. 35(3), 323–344 (2011)CrossRefGoogle Scholar
  10. 10.
    Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds.): Intelligent Computer Mathematics. LNCS, vol. 7961. Springer, Heidelberg (2013)Google Scholar
  11. 11.
    The Coq Proof Assistant.
  12. 12.
    Corbineau, P., Kaliszyk, C.: Cooperative repositories for formal proofs. In: Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds.) MKM/CALCULEMUS 2007. LNCS (LNAI), vol. 4573, pp. 221–234. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    de Bruijn, N.G.: The mathematical language AUTOMATH, its usage, and some of its extensions. In: Laudet, M., Lacombe, D., Nolin, L., Schützenberger, M. (eds.) Symposium on Automatic Demonstration. LNM, vol. 125, pp. 29–61. Springer, Heidelberg (1968)CrossRefGoogle Scholar
  14. 14.
    Gauthier, T., Kaliszyk, C.: Matching concepts across HOL libraries. In: Watt et al. [60], pp. 267–281Google Scholar
  15. 15.
    Gonthier, G.: The four colour theorem: engineering of a formal proof. In: Kapur, D. (ed.) ASCM 2007. LNCS (LNAI), vol. 5081, p. 333. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Gonthier, G., et al.: A machine-checked proof of the Odd Order Theorem. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 163–179. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    Grabowski, A., Korniłowicz, A., Naumowicz, A.: Mizar in a nutshell. J. Formalized Reasoning 3(2), 153–245 (2010)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Hales, T.: Dense Sphere Packings: A Blueprint for Formal Proofs. LMS, vol. 400. Cambridge University Press, Cambridge (2012)CrossRefzbMATHGoogle Scholar
  19. 19.
    Hales, T.C., Adams, M., Bauer, G., Dang, D.T., Harrison, J., Hoang, t.L., Kaliszyk, C., Magron, V., McLaughlin, S., Nguyen, T.T., Nguyen, T.Q., Nipkow, T., Obua, S., Pleso, J., Rute, J., Solovyev, A., Ta, A.H.T., Tran, T.N., Trieu, D.T., Urban, J., Vu, K.K., Zumkeller, R.: A formal proof of the Kepler conjecture (2015). CoRR, abs/1501.02155Google Scholar
  20. 20.
    Harrison, J.: HOL Light: a tutorial introduction. In: Srivas, M., Camilleri, A. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  21. 21.
    Harrison, J., Urban, J., Wiedijk, F.: History of interactive theorem proving. In: Siekmann, J.H. (ed.) Computational Logic. Handbook of the History of Logic, vol. 9, pp. 135–214. North-Holland, Amsterdam (2014)Google Scholar
  22. 22.
    Hendriks, M., Kaliszyk, C., van Raamsdonk, F., Wiedijk, F.: Teaching logic using a state-of-the-art proof assistant. Acta Didactica Napocensia 3(2), 35–48 (2010)Google Scholar
  23. 23.
    Iancu, M., Kohlhase, M., Rabe, F., Urban, J.: The Mizar mathematical library in OMDoc: Translation and applications. J. Autom. Reasoning 50(2), 191–202 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Jeuring, J., Campbell, J.A., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.): Intelligent Computer Mathematics. LNCS, vol. 7362. Springer, Heidelberg (2012)Google Scholar
  25. 25.
    Kaliszyk, C.: Web interfaces for proof assistants. In: Autexier, S., Benzmüller, C. (eds.) Proceedings of the Workshop on User Interfaces for Theorem Provers (UITP 2006), vol. 174, no. 2 of ENTCS, pp. 49–61 (2007)Google Scholar
  26. 26.
    Kaliszyk, C., Rabe, F.: Towards knowledge management for HOL Light. In: Watt et al. [60], pp. 357–372Google Scholar
  27. 27.
    Kaliszyk, C., Urban, U.: MizAR 40 for Mizar 40 (2013). CoRR, abs/1310.2805Google Scholar
  28. 28.
    Kaliszyk, C., Urban, J.: Learning-assisted automated reasoning with Flyspeck. J. Autom. Reasoning 53(2), 173–213 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Kaliszyk, C., Urban, J.: HOL(y)Hammer: online ATP service for HOL Light. Math. Comput. Sci. 9(1), 5–22 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Kaliszyk, C., Urban, J., Vyskocil, J., Geuvers, H.: Developing corpus-based translation methods between informal, formal mathematics: project description. In: Watt et al. [60], pp. 435–439Google Scholar
  31. 31.
    Kaliszyk, C., Wiedijk, F.: Merging procedural and declarative proof. In: Berardi, S., Damiani, F., de’Liguoro, U. (eds.) TYPES 2008. LNCS, vol. 5497, pp. 203–219. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  32. 32.
    Kaufmann, M., Moore, J.S.: An ACL2 tutorial. In: Mohamed et al. [43], pp. 17–21Google Scholar
  33. 33.
    Klein, G., Andronick, J., Elphinstone, K., Heiser, G., Cock, D., Derrin, P., Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood, S.: seL4: formal verification of an operating-system kernel. Commun. ACM 53(6), 107–115 (2010)CrossRefGoogle Scholar
  34. 34.
    Kohlhase, M.: OMDoc 2006. LNCS, vol. 4180. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  35. 35.
    Kühlwein, D., Blanchette, J.C., Kaliszyk, C., Urban, J.: MaSh: machine learning for Sledgehammer. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 35–50. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  36. 36.
    Kühlwein, D., van Laarhoven, T., Tsivtsivadze, E., Urban, J., Heskes, T.: Overview and evaluation of premise selection techniques for large theory mathematics. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 378–392. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  37. 37.
    Lange, C.: OMDoc ontology (2011).
  38. 38.
    Lange, C.: Ontologies and languages for representing mathematical knowledge on the semantic web. Semantic Web 4(2), 119–158 (2013)Google Scholar
  39. 39.
    Lange, C., Rowat, C., Kerber, M.: The ForMaRE project - formal mathematical reasoning in economics. In: Carette et al. [10], pp. 330–334Google Scholar
  40. 40.
    Lange, C., Urban, J. (eds.): Proceedings of the ITP Workshop on Mathematical Wikis (MathWikis), no. 767 in CEUR Workshop Proceedings, Aachen (2011)Google Scholar
  41. 41.
    Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–115 (2009)CrossRefGoogle Scholar
  42. 42.
    Matuszewski, R. (ed.): The QED Workshop II, Warsaw University Technical report No. L/1/95 (1995)Google Scholar
  43. 43.
    Mohamed, O.A., Muñoz, C., Tahar, S. (eds.): Theorem Proving in Higher Order Logics. LNCS, vol. 5170. Springer, Heidelberg (2008)Google Scholar
  44. 44.
    Nalepa, G.J.: Collective knowledge engineering with semantic wikis. J. UCS 16(7), 1006–1023 (2010)Google Scholar
  45. 45.
    Niles, I., Pease, A.: Towards a standard upper ontology. In: FOIS, pp. 2–9 (2001)Google Scholar
  46. 46.
    Owre, S., Shankar, N.: A brief overview of PVS. In: Mohamed et al. [43], pp. 22–27Google Scholar
  47. 47.
  48. 48.
    Rabe, F.: The MMT API: a generic MKM system. In: Carette et al. [10], pp. 339–343Google Scholar
  49. 49.
    Ramachandran, D., Reagan, P., Goolsbey, K.: First-orderized ResearchCyc: expressiveness and efficiency in a common sense knowledge base. In: Shvaiko P. (ed.) Proceedings of the Workshop on Contexts and Ontologies: Theory, Practice and Applications (2005)Google Scholar
  50. 50.
    Ring, M., Lüth, C.: Collaborative interactive theorem proving with clide. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 467–482. Springer, Heidelberg (2014)Google Scholar
  51. 51.
    Robinson, J.A., Voronkov, A. (eds.): Handbook of Automated Reasoning (in 2 volumes). Elsevier and MIT Press, New York (2001)zbMATHGoogle Scholar
  52. 52.
    Schürmann, C.: The Twelf proof assistant. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 79–83. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  53. 53.
    Tankink, C., Kaliszyk, C., Urban, J., Geuvers, H.: Formal mathematics on display: a wiki for Flyspeck. In: Carette et al. [10], pp. 152–167Google Scholar
  54. 54.
    Tankink, C., Lange, C., Urban, J.: Point-and-write - documenting formal mathematics by reference. In: Jeuring et al. [24], pp. 169–185Google Scholar
  55. 55.
    Urban, J.: XML-izing Mizar: making semantic processing and presentation of MML easy. In: Kohlhase, M. (ed.) MKM 2005. LNCS (LNAI), vol. 3863, pp. 346–360. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  56. 56.
    Urban, J.: Content-based encoding of mathematical and code libraries. In: Lange, C., Urban, J. (eds.) Proceedings of the ITP Workshop on Mathematical Wikis (MathWikis), no. 767 in CEUR Workshop Proceedings, pp. 49–53, Aachen (2011)Google Scholar
  57. 57.
    Urban, J., Alama, J., Rudnicki, P., Herman Geuvers, A.: Wiki for Mizar: Motivation, considerations, and initial prototype. In: Autexier et al. [7], pp. 455–469Google Scholar
  58. 58.
    Urban, J., Rudnicki, P., Sutcliffe, G.: ATP and presentation service for Mizar formalizations. J. Autom. Reasoning 50, 229–241 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Urban, J., Sutcliffe, G.: Automated reasoning and presentation support for formalizing mathematics in Mizar. In: Autexier et al. [7], pp. 132–146Google Scholar
  60. 60.
    Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.): CICM 2014. LNCS, vol. 8543. Springer, Heidelberg (2014)Google Scholar
  61. 61.
    Wenzel, M., Paulson, L.C., Nipkow, T.: The Isabelle framework. In: Mohamed et al. [43], pp. 33–38Google Scholar
  62. 62.
    Worden, L.: WorkingWiki: a MediaWiki-based platform for collaborative research. In: Lange and Urban [40], pp. 63–73Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.University of InnsbruckInnsbruckAustria
  2. 2.Czech Technical University in PraguePragueCzech Republic

Personalised recommendations