Characterization of Tube Repair Weld in Thermal Power Plant Made of a 12%Cr Tempered Martensite Ferritic Steel

  • Gordana M. Bakic
  • Milos B. Djukic
  • Bratislav Rajicic
  • Vera Sijacki Zeravcic
  • Aleksandar Maslarevic
  • Miladin Radovic
  • Vesna Maksimovic
  • Nenad Milosevic
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)


The heat resistant tempered martensite ferritic steel X20CrMoV121 (DIN) has been extensively used within the last few decades as a material for boiler tubing systems and pipelines in thermal power plants (TPP). Long-term behavior of this steel is vastly researched and very well known, but main disadvantage is its poor weldability. In situ welding of martensitic steels is always challenging task and is usually quite difficult to implement properly in a short time, during forced outages of TPP. In this paper, characterization and mechanical properties of undermatch welded joint made during partial replacement of boiler outlet superheater (SH) in TPP by austenitic filler material, after 10 years of service are presented. Due to “cold” technique of welding, which does not required post weld heat treatment, this procedure were regular and widely used repair welding technique in two TPP (620 MW) units. In the purpose of comparison, two other type of matching welding joints of the same SH were also characterized: shop welded joint made by electrical resistance flash butt welding, as well as field welded joint made by gas tungsten arc welding during assembling of SH, which were both in service approximately 150,000 h.


  1. 1.
    Gandy D (2006) X20 CrMoV12-1 steel handbook. EPRI, Palo Alto, CA. 1012740Google Scholar
  2. 2.
    Van Zul FH et al (2005) Life assessment and creep damage monitoring of high temperature power components in South Africa’s power plant. In: Abstracts of the 1st ECCC creep conference, DEStech Publications, London, 12–14 Sept 2005Google Scholar
  3. 3.
    Eggeler G (1989) The effect of long-term creep on particle coarsening in tempered martensite ferritic steels. Acta Metall 37:3225–3234CrossRefGoogle Scholar
  4. 4.
    Bakic G, Sijacki Zeravcic V, Djukic MB et al (2014) Material characterization of the main steam gate valve made of X20CrMoV 12.1 steel after long term service. Proced Mater Sci 3:1512–1517. doi:10.1016/j.mspro.2014.06.244 CrossRefGoogle Scholar
  5. 5.
    Bakic G, Sijacki Zeravcic V, Djukic M et al (2014) Characterisation of undermatch welded joint of X20CrMoV121 steel after prolonged service. Struct Integr Life 14:133–140Google Scholar
  6. 6.
    Milovic LJ, Vuherer T, Blacic I (2013) Microstructures and mechanical properties of creep resistant steel for application at elevated temperatures. Mater Des 46:660–667. doi:10.1016/j.matdes.2012.10.057 CrossRefGoogle Scholar
  7. 7.
    Zielińska-Lipiec A, Kozieł T, Czyrska-Filemonowicz A (2010) Quantitative characterisation of the microstructure high chromium steel with boron for advanced steam power plants. J Achiev Mater Manuf Eng 43:200–204Google Scholar
  8. 8.
    Maile K (2007) Evaluation of microstructural parameters in 9–12 % Cr-steels. Int J Press Vessels Pip 84:62–68. doi:10.1016/j.ijpvp.2006.09.012 CrossRefGoogle Scholar
  9. 9.
    Straub S, Blum W, Röttger D et al (1997) Microstructural stability of the martensitic steel X20CrMoV12-1 after 130000 h of service at 530 °C. Steel Res 68:368–373Google Scholar
  10. 10.
    Zhen-Fel H, Zhen-Guo Y (2003) Identification of the precipitates by TEM and EDS in X20CrMoV12.1 after long-term service at elevated temperature. J Mater Eng Perform 12:106–111. doi:10.1361/105994903770343556 CrossRefGoogle Scholar
  11. 11.
    Bakic G (2012) Model for remaining life assessment of thermal power plant components. Dissertation, University of BelgradeGoogle Scholar
  12. 12.
    Sijacki Zeravcic V, Bakic G, Djukic M et al (2010) Contemporary maintenance management of power plant life exhaustion components. Tech Technol Educ Manag 5:431–436Google Scholar
  13. 13.
    Bakic GM, Sijacki Zeravcic VM, Djukic MB et al (2011) Thermal history and stress state of a fresh steam-pipeline influencing its remaining service life. Therm Sci 15:691–704. doi:10.2298/TSCI110509050B CrossRefGoogle Scholar
  14. 14.
    Bakic GM, Sijacki Zeravcic VM, Djukic MB et al (2014) Remaining life assessment of a high pressure turbine casing in creep and low cycle service regime. Therm Sci 17:S127–S138. doi:10.2298/TSCI121219179B CrossRefGoogle Scholar
  15. 15.
    Djukic MB, Sijacki Zeravcic V, Bakic GM et al (2015) Hydrogen damage of steel: a case study and hydrogen embrittlement model. Eng Fail Anal 58:485–498. doi:10.1016/j.engfailanal.2015.05.017 CrossRefGoogle Scholar
  16. 16.
    Sijacki Zeravcic V, Bakic G, Djukic M et al (2008) Failures at elevated temperatures. In: Sedmak S, Radakovic Z (eds) The challenge of materials and weldments, structural integrity and life assessment. Monograph from 9th international fracture mechanics school. Society for Structural Integrity and Life, Faculty of Technology and Metallurgy, University of Belgrade, Gosa, Serbia, pp 183–202Google Scholar
  17. 17.
    Sijacki Zeravcic V, Bakic G, Djukic M et al (2004) Malfunctioning during service life. In: Sedmak S, Radakovic Z (eds) From fracture mechanics to structural integrity assessment. Monograph from 8th international fracture mechanics summer school—IFMASS8. Society for Structural Integrity and Life, Faculty of Technology and Metallurgy, University of Belgrade, pp 193–208Google Scholar
  18. 18.
    Aghajani A, Somsen Ch, Eggeler G (2009) On the effect of long-term creep on the microstructure of a 12 % chromium tempered martensite ferritic steel. Acta Mater 57:5093–5106. doi:10.1016/j.actamat.2009.07.010 CrossRefGoogle Scholar
  19. 19.
    Aghajani A, Richter F, Somsen C et al (2009) On the formation and growth of Mo-rich Laves phase particles during long-term creep of a 12 % chromium tempered martensite ferritic steel. Scripta Mater 61:1068–1071. doi:10.1016/j.scriptamat.2009.08.031 CrossRefGoogle Scholar
  20. 20.
    Kostka A, Tak K-G, Hellmig RJ et al (2007) On the contribution of carbides and micrograin boundaries to the creep strength of tempered martensite ferritic steels. Acta Mater 55:539–550. doi:10.1016/j.actamat.2006.08.046 CrossRefGoogle Scholar
  21. 21.
    Pesicka J, Aghajani A, Somsen Ch et al (2010) How dislocation substructures evolve during long-term creep of a 12 % Cr tempered martensitic ferritic steel. Scripta Mater 62:353–356. doi:10.1016/j.scriptamat.2009.10.037 CrossRefGoogle Scholar
  22. 22.
    Isik MI, Kostka A, Eggeler G (2014) On the nucleation of Laves phase particles during high-temperature exposure and creep of tempered martensite ferritic steels. Acta Mater 81:230–240. doi:10.1016/j.actamat.2014.08.008 CrossRefGoogle Scholar
  23. 23.
    Liu F, Fors DHR, Golpayegani A et al (2012) Effect of boron on carbide coarsening at 873 K (600 ˚C) in 9 to 12 pct chromium steels. Metall Mater Trans A 43:4053–4062. doi:10.1007/s11661-012-1205-6 CrossRefGoogle Scholar
  24. 24.
    Rojas D, Garcia J, Prat O et al (2011) Effect of processing parameters on the evolution of dislocation density and sub-grain size of a 12 % Cr heat resistant steel during creep at 650 ˚C. Mater Sci Eng A 528:1372–1381. doi:10.1016/j.msea.2010.10.028 CrossRefGoogle Scholar
  25. 25.
    Yamamoto K, Kimura Y, Mishima Y (2003) Effect of matrix substructures on precipitation of the Laves phase in Fe–Cr–Nb–Ni system. ISIJ Int 43:1253–1259. doi:10.2355/isijinternational.43.1253 CrossRefGoogle Scholar
  26. 26.
    Kipelova A, Belyakov Kaibyshev R (2012) Laves phase evolution in a modified P911 heat resistant steel during creep at 923 K. Mater Sci Eng A 532:71–77. doi:10.1016/j.msea.2011.10.064 CrossRefGoogle Scholar
  27. 27.
    Hald J (2008) Microstructure and long-term creep properties of 9–12 % Cr steel. Int J Press Vessels Pip 85:30–37. doi:10.1016/j.ijpvp.2007.06.010 CrossRefGoogle Scholar
  28. 28.
    Isik MI, Kostka A, Yardley VA (2015) The nucleation of Mo-rich Laves phase particles adjacent to M23C6 micrograin boundary carbides in 12 % Cr tempered martensite ferritic steels. Acta Mater 90:94–104. doi:10.1016/j.actamat.2015.01.027 CrossRefGoogle Scholar
  29. 29.
    Wu R, Sandström R (1995) Creep cavity nucleation and growth in 12Cr–Mo–V steel. Mater Sci Technol 11:579–588. doi:10.1179/mst.1995.11.6.579 CrossRefGoogle Scholar
  30. 30.
    Tian ZL, Coussement C, Witte MD et al (1991) Creep behaviour of 12Cr–Mo–V steel weldments. Int J Press Vessels Pip 46:339–348. doi:10.1016/0308-0161(91)90077-F CrossRefGoogle Scholar
  31. 31.
    Fournier B, Sauzay M et al (2005) Experimentally based modelling of cyclically induced softening in a martensitic steel at high temperature. In: Abstracts of ECCC creep conference, London, 12–14 Sept 2005Google Scholar
  32. 32.
    Béres L, Balogh A, Irmer W et al (2003) Behavior of welded joints of creep-resistant steels at service temperature. Weld Res 82:330S–336SGoogle Scholar
  33. 33.
    Mladenovic SM, Sijacki Zeravcic VM, Bakic GM et al (2014) Numerical analysis of thermal stresses in welded joint made of steels X20 and X22. Therm Sci 18:S121–S126. doi:10.2298/TSCI131211178M CrossRefGoogle Scholar
  34. 34.
    Vasovic I, Maksimovic S, Maksimovic K et al (2014) Determination of stress intensity factors in low pressure turbine rotor discs. Math Probl Eng 2014. article ID 304638. doi:10.1155/2014/304638 Google Scholar
  35. 35.
    Djukic M, Sijacki Zeravcic V, Bakic G et al (2006) Weld geometry defect influence on boiler tube structural integrity. In: IIW international congress “welding and joining technologies for a sustainable development and environment”, the 1st south-east European welding congress, proceedings of the 2006 IIW international congress, vol 3, Timisoara, 24–26 May. The International Institute of Welding (IIW), pp 169–179Google Scholar
  36. 36.
    Sijacki Zeravcic V, Bakic G et al (2004) International report. 12-03-12.04/2004 Study of remaining life of boiler tubing system, Unit 1, TPP “Nikola Tesla”, Faculty of Mechanical Engineering, Belgrade, p 283Google Scholar
  37. 37.
    Sijacki Zeravcic V, Bakic G et al (2002) RCM in power plant practice illustrated on observation of material aging and defining of component life exhaustion. In: Abstracts of the international conference POWER-GEN Middle East 2002, Abu Dhabi, UAE, 21–23 Oct 2002Google Scholar
  38. 38.
    Bakic G, Sijacki Zeravcic V, Djukic M et al (2007) Probability of failure of thermal power plant boiler tubing system due to corrosion. FME Trans 35:47–54Google Scholar
  39. 39.
    Burzic Z, Gaco DZ, Islamovic F et al (2013) The effect of a variable loading on integrity of a welded joint of high alloy-steel X20. Metalurgija 52:181–184Google Scholar
  40. 40.
    Mitrovic R, Momcilovic D, Eric O et al (2012) Study on impact properties of creep-resistant steel thermally simulated heat affected zone. Therm Sci 16:513–525. doi:10.2298/TSCI111006142M CrossRefGoogle Scholar
  41. 41.
    Bakic G, Sijacki Zeravcic V, Radovic M et al (2005) Estimation of the failure time for low-carbon CrMoV steels in creep condition using modified kinetic theory based on microstructural parameters. In: Abstract of the 1st ECCC creep conference, London, 12–14 Sept 2005Google Scholar
  42. 42.
    DIN 17175:1979 standard (1979) Seamless tubes of heat-resistant steels—technical conditions of deliveryGoogle Scholar
  43. 43.
    VGB-R501H Norm (2002) Production and construction supervision of high power steam boilersGoogle Scholar
  44. 44.
    VGB-TW 507:1992 standard (1992) Guideline for the assessment of microstructure and damage development of creep exposed materials for pipes and boiler componentsGoogle Scholar
  45. 45.
    Hrivnák I (1992) Theory of weldability of metals and alloys. Elsevier, AmsterdamGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Gordana M. Bakic
    • 1
  • Milos B. Djukic
    • 1
  • Bratislav Rajicic
    • 1
  • Vera Sijacki Zeravcic
    • 1
  • Aleksandar Maslarevic
    • 2
  • Miladin Radovic
    • 3
  • Vesna Maksimovic
    • 4
  • Nenad Milosevic
    • 1
  1. 1.Faculty of Mechanical EngineeringUniversity of BelgradeBelgradeSerbia
  2. 2.Innovation Center of Faculty of Mechanical EngineeringUniversity of BelgradeBelgradeSerbia
  3. 3.Department of Materials Science and EngineeringTexas A&M UniversityCollege StationUSA
  4. 4.Department of Materials SciencesInstitute of Nuclear Sciences Vinca, University of BelgradeBelgradeSerbia

Personalised recommendations