Advertisement

Mass Movements

  • Mihai MicuEmail author
  • Marta Jurchescu
  • Ionuț Şandric
  • Mihai Ciprian Mărgărint
  • Zenaida Chiţu
  • Dana Micu
  • Roxana Ciurean
  • Viorel Ilinca
  • Mirela Vasile
Chapter
Part of the Springer Geography book series (SPRINGERGEOGR)

Abstract

Romania represents one of Europe’s most active landslide hotspots. The importance of studying these phenomena is both fundamental (establishing the morphogenetic and morphodynamic frameworks) and applied (quantifying and predicting the potential losses inflicted by such processes). The analysis of agents–processes–forms can be directed toward predictive assessments through susceptibility–hazard–risk studies. The complexity of landslides conditioning factors as well as the available data in terms of quantity (multi-temporal and typological more or less complete landslide inventories) and quality (point and polygon-based inventories, uncertainties induced by the correlation between the used method and the working scale) are imposing local-to-regional and regional-to-national approaches, aiming to highlight, in a predictive manner (based either on heuristic, statistic, or probabilistic predictions) the spatial and temporal sequences more or less prone to future processes, as well as the potential consequences and their mitigation strategies.

Keywords

Landslides Damages Inventory Susceptibility Hazards Risks Romania 

Notes

Acknowledgments

Part of the results presented within this chapter were supported by the European Project FP-7 CHANGES (Grant Agreement No. 263953) and by the grants financed by the Romanian Ministry of Education, CNCS–UEFISCDI, project numbers PN II-RU-PD-2010-118, PN II-RU-PD-2013-3-0624 and TD 293.

References

  1. Adger N (2000) Institutional adaptation to environmental risk under the transition in Vietnam. Ann Assoc Am Geogr 90(4):738–758CrossRefGoogle Scholar
  2. Agliardi F, Crosta G, Frattini P (2009) Integrating rockfall risk assessment and countermeasure design by modeling rechniques. NHESS 9:1059–1073Google Scholar
  3. Aleotti P (2004) A warning system for rainfall-induced shallow failures. Eng Geol 73:247–265Google Scholar
  4. Aleotti P, Chowdhury RN (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Environ 58:21–44CrossRefGoogle Scholar
  5. Armaş I (2011) Weights of evidence method for landslide susceptibility mapping. Prahova Subcarpathians, Romania. Nat Hazards 60:937–950CrossRefGoogle Scholar
  6. Armaş I (2012) An analytic multicriteria hierarchical approach to assess landslide vulnerability, case study: Cornu village, Subcarpathian Prahova Valley/Romania. Z für Geomorphol 55:209–229CrossRefGoogle Scholar
  7. Armaş I (2014) Diagnosis of landslide risk for individual buildings: insights from Prahova Subcarpathians, Romania. Environ Earth Sci 71:4637–4646CrossRefGoogle Scholar
  8. Bălteanu D (1970) Morfodinamica porniturilor de teren pe Valea Apostului (Munţii Buzăului). SCGGG-Geogr XVII:2 (in Romanian)Google Scholar
  9. Bălteanu D (1980) Măsurători asupra unor procese de creep în perimetrul în perimetrul Staţiunii de Cercetări Geografice Pătârlagele. SCGGG-Geogr XVII (in Romanian)Google Scholar
  10. Bălteanu D (1983) Experimentul de teren în geomorfologie. Edit. Academiei Române, Bucureşti (in Romanian)Google Scholar
  11. Bălteanu D, Constantin M (1998) Valley damming by landslides in the Buzău Subcarpathians. Analele Universităţii din Oradea, Ser. Geografie-Geomorfologie VIII(A):33–38Google Scholar
  12. Bălteanu D, Micu M (2009) Landslide investigation: from morphodynamic mapping to hazard assessment. A case study in the Romanian Subcarpathians, muscel catchment. In: Malet J-Ph, Remaitre A, Bogaard T (eds) Landslide processes. From geomorphologic mapping to dynamic modelling. CERG Editions, Strasbourg, pp 235–241Google Scholar
  13. Bălteanu D, Micu M (2012) Morphodynamics of the Chirleşti mudflow (Buzău mountains). Rom J Geogr 56(2)Google Scholar
  14. Bălteanu D, Chendeş V, Sima M, Enciu P (2010) A country-wide spatial assessment of landslide susceptibility in Romania. Geomorphology, Special Issue “Recent advances in landslide investigation” 124(3–4):102–112Google Scholar
  15. Bell R, Glade T (2004) Landslide risk analysis for Bíldudalur, NW-Iceland. Nat Hazard Earth Syst Sci 4:1–15CrossRefGoogle Scholar
  16. Birkmann J (2006) Indicators and criteria for measuring vulnerability: theoretical basis and requirements. In: Birkmann J (ed) Measuring vulnerability to natural hazards towards disaster resilient societies. United Nations University, Tokyo, pp 55–77Google Scholar
  17. Blaikie P, Cannon T, Davis I, Wisner B (1994) At risk—natural hazards, people’s vulnerability, and disasters. Routledge, LondonGoogle Scholar
  18. Boengiu S, Licurici M, Marinescu E (2008) Landscape changes induced by the mining activity at the contact between the Olteţ Piedmont and Gorj Subcarpathians. GIS applications. Bull Geol Soc Greece XLII(II):74–81Google Scholar
  19. Boengiu S, Török-Oance M, Vîlcea C (2013) Deep-seated landslides of Seciurile (Getic Piedmont, Romania) and its implication for the settlement. In: Margottini C, Canuti P, Sassa K (eds) Landslide science and practice. Social and economic impact and policies, vol 7. Springer, Berlin-Heidelberg, pp 113–119CrossRefGoogle Scholar
  20. Brooks N (2003) Vulnerability, risk and adaptation: a conceptual framework. http://www.gsdrc.org/go/display&type=Document&id=3979, pp 1–20. Accessed 7 Nov 2014
  21. Bunce CM (2008) Risk estimation for railways exposed to landslides. PhD thesis, University of Alberta, Edmonton, CanadaGoogle Scholar
  22. Cascini L (2008) Applicability of landslide susceptibility and hazard zoning at different scales. Eng Geol 102:164–177CrossRefGoogle Scholar
  23. Cazacu GB, Draghici G (2011) Identificarea şi determinarea hazardelor naturale – alunecarea de la Seimeni. Revista Română de inginerie civilă 2 (in Romanian)Google Scholar
  24. Chitu Z, Sandric I, Mihai B, Savulescu I (2009) Evaluate Landslide Susceptibility using Statistical Multivariate Methods: A case-study in the Prahova Subcarpathians, Romania, In: Malet JP, Remaitre A, Borgaard T (Eds) Landslide Processes:From Geological Mapping to Dynamic Modelling, Editions du CERG, Strasbourg, pp. 265–270Google Scholar
  25. Chiţu Z (2010) Predicţia spaţio-temporală a hazardului la alunecări de teren utilizând tehnici S.I.G. Studiu de caz arealul subcarpatic dintre Valea Prahovei şi Valea Ialomiţei. Manuscript PhD thesis, University of Bucharest (in Romanian)Google Scholar
  26. Chiţu Z, Istrate A, Adler MJ, Şandric I, Olariu B, Mihai B (2014) Comparative study of the methods for assessing landslide susceptibility in Ialomiţa Subcarpathians, Romania. In: Engineering geology for society and territory, IAEG XII congress volumes. Springer, ISBN 978-3-319-10303-7Google Scholar
  27. Chowdhury R, Flentje P (2004) Uncertainties in rainfall-induced landslide hazard. Q J Eng GeolHydrogeol 35:61–70CrossRefGoogle Scholar
  28. Constantin M, Trandafir AC, Jurchescu MC, Ciupitu D (2010) Morphology and environmental impact of the Colţi-Aluniş landslide (Curvature Carpathians), Romania. Environ Earth Sci 59(7):1569–1578CrossRefGoogle Scholar
  29. Constantin M, Bednarik M, Jurchescu MC, Vlaicu M (2011) Landslide susceptibility assessment using bivariate statistical analysis and the index of entropy in the Sibiciu Basin (Romania). Environ Earth Sci 63:397–406CrossRefGoogle Scholar
  30. Corominas J (2001) Landslides and climate. In: Proceedings of the 8th international symposium on landslides, vol 4. Cardiff (Galles), pp 1–33Google Scholar
  31. Corominas J, Mavrouli O (2011) Quantitative risk assessment for buildings due to rockfalls: some achievements and challenges. In: International Journee de Recontre sur les Danger Naturel 2011, Lausanne, Switzerland, 17–18 Feb 2011Google Scholar
  32. Corominas J, Moya J (2008) A review of assessing landslide frequency for hazard zoning purposes. Eng Geol 102:193–213CrossRefGoogle Scholar
  33. Corominas J, Copons R, Moya J, Vilaplana J, Altimir J, Amigo J (2005) Quantitative assessment of the residual risk in rockfall protected area. Landslides 2:343–357CrossRefGoogle Scholar
  34. Corominas J, van Westen CJ, Frattini P, Cascini L, Malet J-P, Fotopoulou S (2014) Recommendations for the quantitative analysis of landslide risk. Bull Eng Geol Environ 73(2):209–263Google Scholar
  35. Crozier MJ (1986) Climatic triggering of landslide episodes. In: Landslides: causes, consequences and environment. Croom Helm, pp 169–192Google Scholar
  36. Crozier MJ (1997) The climate-landslide couple: a southern hemisphere perspective. In: Matthews JA, Brunsden D, Frenzel B, Gläser B, Weiß MM (eds) Rapid mass-movement as a source of climatic evidence for the Holocene, vol 19. Gustav Fischer, Stuttgart, pp 333–354Google Scholar
  37. Crozier MJ (2005) Multiple-occurrence regional landslide events in New Zealand: Hazard management issues. Landslides 2:247–256CrossRefGoogle Scholar
  38. Crozier MJ, Eyles RJ (1980) Assessing the probability of rapid mass movement. In: Proceedings of the third Australia and New Zealand conference on geomechanics. New Zealand Institute of Engineers, pp 247–251Google Scholar
  39. Crozier MJ, Glade T (1999) Frequency and magnitude of landsliding: fundamental research issues. Z für Geomorphol, NF Suppl Bd 115:141–155Google Scholar
  40. Cutter SL, Boruff BJ, Shirley WL (2003) Social vulnerability to environmental hazards. Soc Sci Q 84(2):242–261CrossRefGoogle Scholar
  41. Dai FC, Lee CF (2003) A spatiotemporal probabilistic modeling of storm-induced shallow landsliding using aerial photographs and logistic regression. Earth Surf Proc Land 28(5):527–545CrossRefGoogle Scholar
  42. Dai F, Lee C, Ngai Y (2002) Landslide risk assessment and management: an overview. Eng Geol 64(1):65–87CrossRefGoogle Scholar
  43. Damen M, Micu M, Zumpano V, Van Westen CJ, Sijmons K, Balteanu D (2014) Landslide mapping and interpretation: implications for landslide susceptibility analysis in discontinuous data environment. In: Proceedings of the international conference analysis and management of changing risks for natural hazards, pp 177–186Google Scholar
  44. Damian R (2003) Controlul structural-geologic si morfologic in stabilitatea versantilor subcarpatici; conditii climatice si hidrologice. In: Armaş I, Damian R, Şandric I, Osaci–Costache G (eds) Vulnerabilitatea versanţilor la alunecări de teren în sectorul subcarpatic al Văii Prahova. Editura Fundaţiei România de Mâine, Bucureşti (in Romanian)Google Scholar
  45. D’Ecclesiis G, Grassi D, Merenda L, Polemio M, Sdao F (1991) Evoluzione geomorfologica di un’area suburbana di Castronuovo S. In: Andrea PZ (ed) Incidenza delle piogge su alcuni movimenti di massa, Geologia Applicata e Idrogeologia, vol XXVI. Bari, pp 141–163Google Scholar
  46. Devoli G, Strauch W, Chave G, Hoeg K (2007) A landslide database for Nicaragua: a tool for landslide hazard management. Landslides 4:163–176CrossRefGoogle Scholar
  47. Dikau R, Brunsden D, Schrott L, Ibsen M-L (1996) Landslides recognition, identification, movement and causes. Wiley, NewYorkGoogle Scholar
  48. Dinu M, Cioacă A (1997) Precipitation-induced landslides in the Moldavian Plateau (1996–1997). RRG, 41, BucureştiGoogle Scholar
  49. Dragotă CS (2006) Precipitaţiile excedentare din România. Edit. Academiei Române (in Romanian)Google Scholar
  50. Dragotă C, Micu M, Micu D (2008) The relevance of pluvial regime for landslide genesis and evolution. Case study: Muscel basin (Buzău Subcarpathians, Romania). In: Present environment and sustainable development, vol 2. Edit. Universităţii “Al. I. Cuza”, Iaşi, pp 242–257Google Scholar
  51. EC (2010) Commission staff working paper: risk assessment and mapping guidelines for disaster management, SECGoogle Scholar
  52. Eidsvig U, McLean A, Vangelsten B, Kalsnes B, Ciurean RL, Argyroudis S, Winters M, Mavrouli O (2014) Assessment of socioeconomic vulnerability to landslides using an indicator-based approach: methodology and case studies. Bull Geol Eng Environ 73:307–324CrossRefGoogle Scholar
  53. Enulescu C (2007) Date statistice privind construcțiile de locuințe în Europa și America de Nord. Construcții 2:61–65 (in Romanian)Google Scholar
  54. Fell R, Ho K, Lacasse S, Leroi E (2005) A framework for landslide risk assessment and management, state of the art paper 3. In: Proceeding of the international conference on landslide risk management, Vancouver, Canada, 31 May–2 June 2005Google Scholar
  55. Fisher P (1998) Improved modeling of elevation error with geostatistics. GeoInformatica 2(3):215–233CrossRefGoogle Scholar
  56. Flage R, Aven T, Zio E, Baraldi T (2014) Concerns, challenges and directions of development for the issue of representing uncertainty in risk assessment. Risk Anal 34(7):1196–1207CrossRefGoogle Scholar
  57. Flentje P, Chowdhury RN (2002) Frequency of landsliding as part of risk assessment. In: Australian geomechanics news, vol 37(2). Australian Geomechanics Society, Institution of Engineers, Australia, pp 157–167Google Scholar
  58. Flentje PN, Chowdhury RN, Tobin P, Brizga V (2005) Towards real-time landslide risk management in an urban area. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) International conference on landslide risk management. Taylor & Francis Ltd., Vancouver, Canada, pp 741–751Google Scholar
  59. Glade T (2000) Modelling landslide triggering rainfall thresholds at a range of complexities. In: Bromhead E, Dixon N, Ibsen M-L (eds) Landslides in research, theory and practice. Thomas Telford, Cardiff, pp 633–640Google Scholar
  60. Glade T (2003) Vulnerability assessment in landslide risk analysis. Die Erde 134(2):121–138Google Scholar
  61. Godfrey A, Ciurean RL, van Westen CJ, Kingma NC, Glade T (2015) Assessing vulnerability of buildings to hydro-meteorological hazards using an expert-based approach—an application in Nehoiu Valley, Romania. Int J Disaster Risk Reduction 13:229–241CrossRefGoogle Scholar
  62. Goodchild MF (1980) Fractals and the accuracy of geographical measures. J Int Assoc Math Geol 12(2):85–98CrossRefGoogle Scholar
  63. Grozavu A, Mărgărint MC, Patriche CV (2012) Landslide susceptibility assessment in the Brăiești-Sinești sector of Iași Cuesta. Carpath J Earth Environ Sci 7(39–46):201Google Scholar
  64. Grozavu A, Pleşcan S, Patriche CV, Mărgărint MC, Roşca B (2013) Landslide susceptibility assessment: GIS application to a complex mountainous environment. In: Kozac J et al (eds) The Carpathians: integrating nature and society towards sustainability. Springer, pp 31–44Google Scholar
  65. Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: an aid to a sustainable development. Geomorphology 31:181–216CrossRefGoogle Scholar
  66. Guzzetti F, Peruccacci S, Rossi M (2007) Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol Atmos Phys 98:239–267CrossRefGoogle Scholar
  67. Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang KT (2012) Landslide inventory maps: new tools for an old problem. Earth-Sci Rev 112:42–66CrossRefGoogle Scholar
  68. Heuvelink GBM (1998) Error propagation in environmental modelling with GIS. In: Research monographs in geographic information systems. Taylor & Francis, LondonGoogle Scholar
  69. Ichim I (1970) Quelques aspects concernat le rôle des processus de mouvement de mase dans la modelage des versants des montagnes de flysch comprises entre les valles du Cuejdiu et du Nemţişoru. Lucrările Staţiunii de Cercetări Biologice, Geologice şi Geografice “Stejarul” 3:126–133. PângăraţiGoogle Scholar
  70. Ichim I (1972) Le role des processus de mouvement de masse dans le modelage des monts du flysch (Carpathes Orientales). Acta geographica Debrecina X:209–223Google Scholar
  71. Ichim I, Bojoi I (1970) Accelerarea modelării reliefului din bazinele hidrografice Pângăraţi şi Oanţu ca urmare a ploii torenţiale din ziua de 28 Aug 1968. Lucrările Staţiunii de Cercetări Biologice, Geologice şi Geografice “Stejarul” 3:105–115. Pângăraţi (in Romanian)Google Scholar
  72. Ilinca V (2009) Rockfall hazard assessment. Case study: Lotru Valley and Olt Gorge. Rev Geomorfol 11:101–108Google Scholar
  73. Ilinca V (2010) Valea Lotrului. Studiu de geomorfolgie aplicată. PhD thesis, University of Bucharest (in Romanian)Google Scholar
  74. Ilinca V (2012) Evaluarea la scară mare a hazardului la căderi de roci. Studiu de caz: un sector din drumul naţional 7A. In: National symposium on geomorphology, Craiova, 19–21 May 2012 (in Romanian)Google Scholar
  75. Ilinca V (2014) Characteristics of debris flows from the lower part of the Lotru River basin (South Carpathians, Romania). Landslides 11:505–512CrossRefGoogle Scholar
  76. Ilinca V, Varariu G (2013) Rockfalls assessment along Olt Gorge in the sector between Brezoi and Călimăneşti. In: National symposium on geomorphology, Suceava, 30 May–1 June, Abstract pp 46–47Google Scholar
  77. Ilinca V, Chiţu Z, Şandric I, Mihai B, Săvulescu I (2008) Rockfall hazard assessment. A case study from Vâlcea County (Romania). In: Geophysical research abstracts, EGU, eISSN:1607–7962Google Scholar
  78. Institute of Geography of the Romanian Academy (2014) WP5. WATER. D5.2. Report on climate change signals in the Vrancea Seismic Region, ECLISE enabling climate information services for Europe, FP7-ENV-20101, 112 p. http://www.ecliseproject.eu/content/mm_files/do_857/D5.2_RSV_final_report.pdf. Accessed 20 Mar 2015
  79. ISU Bacău: http://www.isubacau.ro/. Accessed on 10 Mar 2012
  80. ISU Buzău: http://www.isubuzau.ro/. Accessed on 12 Feb 2014
  81. ISU Dâmboviţa: http://www.isudb.ro/. Accessed on 14 Feb 2014
  82. ISU Galaţi http://www.isujgalati.ro/. Accessed on 20 Jan 2014
  83. ISU Hunedoara: http://isujhunedoara.ro/. Accessed on 12 Mar 2015
  84. ISU Ialomiţa: http://www.isujialomita.eu/. Accessed on 28 Oct 2014
  85. ISU Mureş: http://www.isumures.ro/. Accessed on 28 Oct 2014
  86. ISU Vâlcea: http://www.isuvl.ro/. Accessed on 3 Apr 2014
  87. Jaedicke et al (2014) Identification of landslide hazard and risk ‘hotspots’ in Europe. 73(2):325–339Google Scholar
  88. Jaiswal P, van Westen CJ, Jetten V (2011) Quantitative estimation of landslide risk from rapid debris slides on natural slopes in the Nilgiri hills, India. NHESS 11:1723–1743Google Scholar
  89. Jenks GF (1967) The data model concept in statistical mapping. Int Yearbook Cartogr 7:186–190Google Scholar
  90. Jurchescu M (2012) Bazinul morfohidrografic al Olteţului. Studiu de geomorfologie aplicată. Manuscript PhD thesis, University of Bucharest (in Romanian)Google Scholar
  91. Jurchescu M, Bălteanu D, Micu M, Chendeş V, Sima M, Zumpano V (2012) Landslide susceptibility assessment in the Southern part of Vrancea-Buzau Seismic Region. In: Geophysical research abstracts, vol 14. EGU General Assembly 2012, EGU2012–5698Google Scholar
  92. Jurchescu M, Dragotă C, Marinică I, Grecu F (2013) Reconsidering rainfall thresholds for landslide occurrence events under scarce data constraints. Examples from a hilly area in South-Western Romania. In: Geomorphologia Slovaca et Bohemica, vol 13(1). Bratislava, p 34Google Scholar
  93. Jurchescu M, Dragota C, Borcan M (2014a) Landslide hazard scenario assessment at a large spatio-temporal scale: the case of a municipality in the getic Subcarpathians, Romania. In: Geophysical research abstracts, vol 16. EGU General Assembly 2014, EGU2014–14733Google Scholar
  94. Jurchescu M, Dragotă C, Marinică I (2014b) Dezvoltarea la scară medie a unui scenario de hazard legat de alucecările de teren – studiu de caz în bazinul Olteţului. Paper presented at the XXXth national symposium on geomorphology, University of Bucharest, Orşova, 29–31 May 2014 (in Romanian)Google Scholar
  95. Karssenberg D (2002) Building dynamic spatial environmental models. PhD thesis, Utrecht University, the NetherlandsGoogle Scholar
  96. Lee CF, Ye H, Yeung MR, Shan X, Chen G (2002) A GIS-based methodology for natural terrain landslide susceptibility mapping in Hong Kong. Episodes 24:150–159Google Scholar
  97. Li Z, Nadim F, Huang H, Uzielli M, Lacasse S (2010) Quantitative vulnerability estimation for scenario-based landslide hazards. Landslides 7:125–134CrossRefGoogle Scholar
  98. Lungu D, Arion C, Aldea A, Văcăreanu R (2007) Seismic hazard, vulnerability and risk for Vrancea events. In: International symposium on strong Vrancea earthquakes and risk mitigation, Bucharest, Romania, 4–6 Oct 2007Google Scholar
  99. Macovei G, Botez G (1923) Comunicare asupra fenomeneor de alunecări şi prăbuşiri de teren din judeţul Râmnicul Sărat. D.S. ale Inst. Geol. Român (1914–1915), Bucureşti (in Romanian)Google Scholar
  100. Mărgarint MC, Niculita M (2014) Comparison and validation of logistic regression and analytic hierarchy process models of landslide susceptibility in monoclinic regions. A case study in Moldavian Plateau, NE Romania. In: EGU2014–6371, Geophys research abstracts, vol. 16Google Scholar
  101. Mărgărint MC, Niculiţă M (2015) Landslide type and spatial pattern in Moldavian Plateau. In: Rădoane M, Vespremeanu-Stroe A (2015) Landform dynamics and evolution in Romania. SpringerGoogle Scholar
  102. Mărgarint MC, Grozavu A, Patriche CV, Tomasciuc AMI, Urdea R, Ungurianu I (2011) Évaluation des risques de glissements de terrain par la méthode de la régression logistique: application à deux zones basses de Roumanie. Dynam Environ 28:41–50Google Scholar
  103. Mărgărint MC, Grozavu A, Patriche CV (2013a) Assessing the spatial variability of coefficients of landslide predictors in different regions of Romania using logistic regression. Nat Hazards Earth Syst Sci 13:3339–3355CrossRefGoogle Scholar
  104. Mărgărint M, Juravle D, Grozavu A, Patriche C, Pohrib M, Stângă I (2013b) Large landslide risk assessment in hilly areas. A case study of Huşi town region (north-east of Romania). Ital J Eng Geol Environ Book Ser 6:275–286Google Scholar
  105. Martha TR (2010) Characterising spectral, spatial and morphometric properties of landslides for semi-automatic detection using object-oriented methods. Geomorphology 116(1–2):24–36CrossRefGoogle Scholar
  106. Mavrouli O (2014) Vulnerability assessment for reinforced concrete buildings exposed to landslides. Bull Eng Geol Environ 73:265–289 Google Scholar
  107. Mazzorana B, Zischg A, Largiader A, Hubl J (2009) Hazard index maps for woody material recruitment and transport in alpine catchments. Nat Hazards Earth Syst Sci 9:197–209CrossRefGoogle Scholar
  108. Micu M (2008) Evaluarea hazardului legat de alunecări de teren în Subcarpaţii dintre Buzău şi Teleajen. Manuscript PhD thesis, Institute of Geography, Bucharest (in Romanian)Google Scholar
  109. Micu M (2011) Landslide assessment: from field mapping to risk management. A case - study in the Buzău Subcarpathians, Forum geografic. Studii și cercetări de geografie și protecţia mediului Volume 10, Issue 1/ June 2011, doi:  10.5775/fg.2067-4635.2011.021
  110. Micu M, Bălteanu D (2009) Landslide hazard assessment in the Bend Carpathians and Subcarpathians, Romania. Z Geomorphol 53(Supplement 3):49–64Google Scholar
  111. Micu M, Bălteanu D (2013) A deep-seated landslide dam in the Siriu Reservoir, Bend Carpathians—Romania. Landslides 10(3):323–329CrossRefGoogle Scholar
  112. Micu M, Chendeş V, Sima M, Bălteanu D, Micu D, Dragotă C (2010) A multi-hazard assessment in the Bend Carpathians of Romania. In: Glade T, Casagli N, Malet JP (eds) Mountain risks: bringing science to the society. CERG Editions, StrasbourgGoogle Scholar
  113. Micu M, Bălteanu D, Micu D, Zarea R, Ruţă R (2013) 2010-landslides in the Romanian Curvature Carpathians. In: Loczy D (ed) Extreme weather and geomorphology. Springer, pp 251–265. doi: 10.1007/978-94-007-6301-2
  114. Micu M, Jurchescu M, Micu D, Zarea R, Zumpano V, Bălteanu D (2014a) A morphogenetic insight into a multi-hazard analysis: Bâsca Mare landslide dam. Landslides. doi: 10.1007/s10346-014-0519-4
  115. Micu M, Malet JP, Bălteanu D, Mărgărint C, Niculiţă M, Jurchescu M, Chitu Z, Şandric I, Simota, C, Mathieu A (2014b) Typologically-differentiated landslide susceptibility assessment for Romania. In: Geophysical research abstracts, vol 16, EGU2014–13315Google Scholar
  116. Micu M, Bălteanu D, Zumpano V, Kucsicsa G, Popovici A, Jurchescu M, Micu D (2015) Landslide hazard assessment in the Curvature Carpathians and Subcarpathians of Romania: between necessity and uncertainties (in prep.)Google Scholar
  117. Mihai B (2005) Timiş mountains (Curvature Carpathians): geomorphic potential and mountain landscape planning. Edit. Universităţii din BucureştiGoogle Scholar
  118. Mihai B, Săvulescu I (2006) Data collection and analysis for the GIS large scale geomorphic hazard and risk mapping in mountain towns and resorts. A case study in Predeal town, Curvature Carpathians. Rev Geomorfol 8:85–93Google Scholar
  119. Mihai B, Şandric I, Săvulescu I, Chiţu Z (2009) Detailed mapping of landslide susceptibility for urban planning purposes in Carpathian and Subcarpathian towns of Romania. In: Gartner G, Ortag F (eds) Cartography in central and eastern Europe. Lecture notes in geoinformation and cartography. Springer, Heidelberg/Berlin, pp 417–429CrossRefGoogle Scholar
  120. Nadim F, Einstein H, Roberds W (2005) Probabilistic stability analysis for individual slopes in soil and rock, state of the art paper 3. In: Proceedings of the international conference of landslide risk assessment, Vancouver, Canada, 31 May–2 June 2005Google Scholar
  121. Naum T, Michalevich V (1956) Contribuţii la cunoaşterea degradărilor de teren din Carpaţii de la Curbură. An Univ CI Parhon 9:213–241 (in Romanian)Google Scholar
  122. Nicorici C, Gray J, Imbroane AM, Barbosu, M (2012) GIS susceptibility maps for shallow landslides: a case study in Transylvania, Romania. Carpath J Earth Environ Sci 7:83–92Google Scholar
  123. Paté-Cornell ME (1996) Uncertainty in risk analysis: six levels of treatment. Reliab Eng Syst Saf 54:95–111CrossRefGoogle Scholar
  124. Pellicani R, van Westen CJ, Spilotro G (2014) Assessing landslide exposure in areas with limited landslide information. Landslides 11(3):463–480CrossRefGoogle Scholar
  125. Perrault M, Geuguen P, Aldea A, Demetriu S (2013) Using experimental data to reduce the single-building sigma of fragility curves: case study of the BRD tower in Bucharest, Romania. Earthquake Eng Eng Vib 12:643–658CrossRefGoogle Scholar
  126. Petschko H, Brenning A, Bell R, Goetz J, Glade T (2014) Assessing the quality of landslide susceptibility maps—case study Lower Austria. Nat Hazards Earth Syst Sci 14:95–118CrossRefGoogle Scholar
  127. Pop O, Surdeanu V, Irimuş IA, Guitton M (2010) Distribution spatiale des coulées de debris contemporaines dans le Massif du Căliman (Roumanie). Studia Universitatis Babeş-Bolyai, Geographia, Cluj-Napoca 55(1):33–44Google Scholar
  128. Pujină D (1998) Cercetări asupra unor procese de alunecare a terenurilor agricole din Podișul Bârladului și contribuții privind tehnica de amenajare a acestora. Manuscript PhD thesis, “Gh. Asachi”, Iași University (in Romanian)Google Scholar
  129. Rădoane N (2003) A new natural dam lake in the catchment of Bistriţei Moldoveneşti – Lake Cuejdel. Studii şi Cercetări de Geografie, Tom XLIX-L:211–216Google Scholar
  130. Rădoane M, Rădoane N (2007) Applied geomorphology. Edit. Universităţii din Suceava, SuceavaGoogle Scholar
  131. Rădoane M, Rădoane N, Ichim I (1995) Folosirea metodei cubului matricial în evaluarea susceptibilităţii la alunecări de teren. Caz studiu: judeţul Neamţ. Studii și cercetări de geografie, t 40:111–118 (in Romanian)Google Scholar
  132. Regmi NR, Giardino JR, McDonald EV, Vitek JD (2013) A comparison of logistic regression-based models of susceptibility to landslides in western Colorado, USA. Landslides 11:247–262CrossRefGoogle Scholar
  133. Riedmann M, Bindrich M, Damen M, Van Westen CJ, Micu M (2014) Generating a landslide inventory map using stereo photo interpretation and radar interferometry techniques, a case study from the Buzău area, Romania. In: Proceedings of the international conference analysis and management of changing risks for natural hazards, pp 571–577Google Scholar
  134. Rossi M, Witt A, Guzzetti F, Malamud BD, Peruccacci S (2010) Analysis of historical landslide time series in the Emilia-Romagna region, Northern Italy. Earth Surf Process Landforms 35(10):1123–1137CrossRefGoogle Scholar
  135. Rougier J, Sparks S, Hill LJ (2013) Risk and uncertainty assessment for natural hazards. In: Rougier J, Sparks S, Hill L (eds). Cambridge Unversity PressGoogle Scholar
  136. Rowe W (1994) Understanding uncertainty. Risk Anal 14(95):743–750CrossRefGoogle Scholar
  137. Sandi H, Pomonis A, Francis S, Georgescu E, Mohindra R, Borcia I (2008) Seismic vulnerability assessment. Methodological elements and applications to the case of Romania. Construcții 2:5–17Google Scholar
  138. Şandric I (2005) Aplicaţii ale teoriei probabilitatilor condiţionate în geomorfologie. Analele Universităţii Bucureşti 54:83–97 (in Romanian)Google Scholar
  139. Şandric I (2008) Sistem informaţional geografic temporal pentru analiza hazardelor naturale. O abordare bayesiană cu propagare a erorilor. Manuscript PhD thesis, University of Bucharest (in Romanian)Google Scholar
  140. Şandric I (2009) Landslide inventory for the administrative area of Breaza, Curvature Subcarpathians, România. J Maps 5(1):75–86CrossRefGoogle Scholar
  141. Şandric I (2010) Object-oriented methods for landslides detection using high resolution imagery, morphometric properties and meteorological data. In: International archives of the photogrammetry, remote sensing and spatial information sciences—ISPRS archives. International Society for Photogrammetry and Remote Sensing, pp 486–491Google Scholar
  142. Şandric I (2011) Landslide susceptibility for the administrative area of Breaza, Prahova County, Curvature Subcarpathians, România. J Maps 7(1):552–563CrossRefGoogle Scholar
  143. Şandric I (2015) Analysis of uncertainty propagation from GIS data into landslides susceptibility assessment. Geomorphology (Submitted)Google Scholar
  144. Şandric I, Chiţu Z (2009) Landslide inventory for the administrative area of Breaza, Curvature Subcarpathians, Romania. J Maps 7:75–86. doi: 10.4113/jom.2009.1051 CrossRefGoogle Scholar
  145. Sandu M (1999) Alunecarea de la Lacul lui Baban. Stadiu de evoluţie. Revista Geografică, t. V, Bucureşti (in Romanian)Google Scholar
  146. Scaioni A, Longoni L, Melillo V, Papini M (2014) Remote sensing for landslide investigations: an overview of recent achievements and perspectives. Remote Sens 6–10:9600–9652CrossRefGoogle Scholar
  147. Schmidt J, Dikau R (2004) Modelling historical climate variability and slope stability. Geomorphology 60:433–447CrossRefGoogle Scholar
  148. Sima M (2011) Mining and river pollution in Metaliferi mountains. Applications in the Crisul Alb and Certej river basins. Edit. Academiei Române, BucureștiGoogle Scholar
  149. Simon N, Crozier M, de Roiste M, Rafek AG (2013) Point based assessment: selecting the best way to represent landslide polygon as point frequency in landslide investigation. Electron J Geotech Eng 18:775–784Google Scholar
  150. Sorocovschi V (2007) Vulnerabilitatea, componentă a riscului. Concept, variabile de control, tipuri şi modele de evaluare. In: Riscuri și catastrofe, VI, Casa Cărții de Știință, Cluj-Napoca, pp 58–69 (in Romanian)Google Scholar
  151. Stângă I, Grozavu A (2012) Quantifying human vulnerability in rural areas—case study of Tutova hills (Eastern Romania). NHESS 12:1987–2001Google Scholar
  152. Stângă I, Rusu C (2006) The concepts of vulnerability and resilience used in natural risk analysis. Buletinul Societătii de Geografie din România 12:129–142Google Scholar
  153. Ştefănescu M (1995) Stratigraphy and structure of Cretaceous and Paleogene flysch deposits between Prahova and Ialomiţa valleys. Rom J Tectonics Reg Geol. Institutul Geologic al României, BucureştiGoogle Scholar
  154. Surdeanu V (1996) La repartition des glissements de terrain dans le Carpates Orientales (zone du flysch). Geografia Fisica e Dinamica Quaternaria 19(2):265–271Google Scholar
  155. Surdeanu V (1998) Geografia terenurilor degradate. I. Landslides. Edit. Presa Universitară Clujeană, Cluj-Napoca (in Romanian)Google Scholar
  156. Surdeanu V, Rus I, Irimuş IA, Petrea D, Cocean P (2009) Rainfall influence on landslide dynamics (Carpathian Flysch Area, Romania). Geografia Fisica e Dinamica Quaternaria 32(1):89–94Google Scholar
  157. Surdeanu V, Pop O, Chiaburu M, Dulgheru M, Anghel T (2010) La dendrogéomorphologie appliquée a l’étude des processus géomorphologiques des zones minières dans le Massif du Calimani (Carpates Orientales, Roumanie). In: Surdeanu V, Stoffel M, Pop O (eds) Dendrogéomorphologie et dendroclimatologie—méthodes de reconstitution des milieux géomorphologiques et climatiques des régions montagneuses. Presa Universitară Clujeană, Cluj-Napoca, pp 107–124Google Scholar
  158. Tanislav D, Costache A, Murătoreanu G (2009) Vulnerability to natural hazards in Romania. Forum Geografic, Studii si cercetări de geografie și protectia mediului 8(8):131–138Google Scholar
  159. Tate E (2012) Uncertainty analysis for a social vulnerability index. Ann Assoc Am Geogr 10:1–18Google Scholar
  160. Terranova O, Antronico L, Gulla G (2007) Landslide triggering scenarios in homogeneous geological contexts: the area surrounding Acri (Calabria, Italy). Geomorphology 87(4):250–267CrossRefGoogle Scholar
  161. Thiebes B (2012) Landslide analysis and early warning systems. Local and regional case study in the Swabian Alb, Germany. Springer Theses. Springer, Berlin HeidelbergGoogle Scholar
  162. Thiery MY, Malet J-P, Sterlacchini S, Puissant A, Maquaire O (2007) Landslide susceptibility assessment by bivariate methods at large scales: application to a complex mountainous environment. Geomorphology 9(1–2):38–59CrossRefGoogle Scholar
  163. Turner B, Kasperson R, Matson R, McCarthy J, Corell L, Christensen R (2003) A framework for vulnerability analysis in sustainability science. In: Proceedings of the national academy of sciences of the USGoogle Scholar
  164. UN-ISDR (2004) Living with risk: a global reviews of disaster reduction initiatives, vol 1. United Nations, New York and GenevaGoogle Scholar
  165. UN-ISDR (2009) Terminology on Disaster Risk Reduction, United Nations, New York and GenevaGoogle Scholar
  166. Uzielli M, Nadim F, Lacasse S, Kaynia AM (2008) A conceptual framework for quantitative estimation of physical vulnerability to landslides. Eng Geol 102(3–4):251–256CrossRefGoogle Scholar
  167. Van Asch TWJ (1997) The temporal activity of landslides and its climatological signals. In: Matthews JA, Brunsden D, Frenzel B, Gläser B, Weiß MM (eds) Rapid mass movement as a source of climatic evidence for the holocene. Palaeoclimate research, vol 19. Gustav Fischer, Stuttgart, pp 7–16Google Scholar
  168. Van Den Eeckhaut M, Hervás J (2012a) State of the art of national landslide database in Europe and their potential for assessing landslide susceptibility, hazard and risk. Geomorphology 139–140:545–558CrossRefGoogle Scholar
  169. Van Den Eeckhaut M, Hervás J (2012b) Landslide inventories in Europe and policy recommendations for their interoperability and harmonization. A JRC contribution to the EU-FP7 safeland project. Luxembourg Publications Office of the European UnionGoogle Scholar
  170. Van Den Eeckhaut M, Poesen J, Vandekerckhove L, Van Gils M, Van Rompaey A (2010) Human-environment interactions in residential areas susceptible to landsliding: the Flemish Ardennes case study. Area 42(3):339–358CrossRefGoogle Scholar
  171. Van Westen CJ, van Asch T, Soeters R (2006) Landslide hazard and risk zonation—why is it still so difficult? Bull Eng Geol Environ 65(167):184Google Scholar
  172. Van Westen CJ, Castellanos E, Kuriakose SL (2008) Spatial data for landslide susceptibility, hazard, and vulnerability assessement: an overview. Eng Geol 102:112–131CrossRefGoogle Scholar
  173. Van Westen CJ, Bakker WH, Andrejchenko V, Zhang K, Berlin J, Cristal I, Olyazadeh R (2014) Roskchanges: a spatial decision support system for analyzing changing hydro-meteorological risk. In: Proceedings of the international conference analysis and management of changing risks for natural hazards, Padua, Italy, 18–19 Nov 2014Google Scholar
  174. Varnes DJ (1984) Landslide hazard zonation, a review of principles and practice. IAEG Commission on Landslides, UNESCO, ParisGoogle Scholar
  175. Walker BF (2007) Rainfall data analysis and relation to the incidence of landsliding at Newport. Aus Geomech 42(1)Google Scholar
  176. White ID, Mottershead DN, Harrison JJ (1996) Environmental systems, 2nd edn. Chapman & Hall, LondonCrossRefGoogle Scholar
  177. Wieczorek GF (1987) Effect of rainfall intensity and duration on debris flows in central Santa Cruz Mountains. In: Costa JE, Wieczorek GF (eds) Debris flow/avalanches: process, recognition, and mitigation. Geological Society of America. Reviews in engineering geology, vol 7, pp 93–104Google Scholar
  178. Winter M, Smith J, Fotopoulou S, Pitilakis K, Mavrouli O, Corominas J, Argyroudis S (2014) An expert judgment approach to determining the physical vulnerability of roads to debris flow. Bull Eng Geol Environ 73(2):291–305CrossRefGoogle Scholar
  179. Wisner B, Blaikie P, Cannon T, Davis I (2004) Natural hazards, people’s vulnerability and disasters, 2nd edn. Routledge, London, New YorkGoogle Scholar
  180. Zêzere JL, Reis E, Garcia R, Oliveira S, Rodrigues ML, Vieira G, Ferreira AB (2004a) Integration of spatial and temporal data for the definition of different landslide hazard scenarios in the area north of Lisbon (Portugal). Nat Hazards Earth Syst Sci 4:133–146CrossRefGoogle Scholar
  181. Zêzere JL, Rodrigues ML, Reis E, Garcia R, Oliveira S, Vieira G, Ferreira AB (2004b) Spatial and temporal data management for the probabilistic landslide hazard assessment considering landslide typology. In: Lacerda E, Fontoura S (eds) Landslides: evaluation and stabilization. Taylor & Francis Group, London, pp 117–123Google Scholar
  182. Zêzere J, Garcia R, Oliviera S, Reis E (2008) Probabilistic landslide risk analysis considering direct costs in the area north of Lisbon (Portugal). Geomorphology 94:4467–4495CrossRefGoogle Scholar
  183. Zumpano V, Hussin H, Reichenbach P, Bãlteanu D, Micu M, Sterlacchini S (2014) A landslide susceptibility analysis for Buzãu County, Romania. Revue Roumaine de Geographie/Rom J Geogr 58(1)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Mihai Micu
    • 1
    Email author
  • Marta Jurchescu
    • 1
  • Ionuț Şandric
    • 2
  • Mihai Ciprian Mărgărint
    • 5
  • Zenaida Chiţu
    • 3
  • Dana Micu
    • 1
  • Roxana Ciurean
    • 4
  • Viorel Ilinca
    • 6
  • Mirela Vasile
    • 7
  1. 1.Institute of GeographyRomanian AcademyBucharest, sector 2Romania
  2. 2.Faculty of GeographyUniversity of BucharestBucharest, sector 1Romania
  3. 3.National Institute of Hydrology and Water ManagementBucharestRomania
  4. 4.Department of Geography and Regional ResearchUniversity of ViennaViennaAustria
  5. 5.Departament of GeographyAlexandru Ioan Cuza University of IașiIașiRomania
  6. 6.Geological Institute of RomaniaCaransebeș 1, sector 1Romania
  7. 7.Research Institute of the University of Bucharestsector 5, BucharestRomania

Personalised recommendations