Landform Dynamics and Evolution in Romania pp 765-820 | Cite as
Mass Movements
- 1 Citations
- 569 Downloads
Abstract
Romania represents one of Europe’s most active landslide hotspots. The importance of studying these phenomena is both fundamental (establishing the morphogenetic and morphodynamic frameworks) and applied (quantifying and predicting the potential losses inflicted by such processes). The analysis of agents–processes–forms can be directed toward predictive assessments through susceptibility–hazard–risk studies. The complexity of landslides conditioning factors as well as the available data in terms of quantity (multi-temporal and typological more or less complete landslide inventories) and quality (point and polygon-based inventories, uncertainties induced by the correlation between the used method and the working scale) are imposing local-to-regional and regional-to-national approaches, aiming to highlight, in a predictive manner (based either on heuristic, statistic, or probabilistic predictions) the spatial and temporal sequences more or less prone to future processes, as well as the potential consequences and their mitigation strategies.
Keywords
Landslides Damages Inventory Susceptibility Hazards Risks RomaniaNotes
Acknowledgments
Part of the results presented within this chapter were supported by the European Project FP-7 CHANGES (Grant Agreement No. 263953) and by the grants financed by the Romanian Ministry of Education, CNCS–UEFISCDI, project numbers PN II-RU-PD-2010-118, PN II-RU-PD-2013-3-0624 and TD 293.
References
- Adger N (2000) Institutional adaptation to environmental risk under the transition in Vietnam. Ann Assoc Am Geogr 90(4):738–758CrossRefGoogle Scholar
- Agliardi F, Crosta G, Frattini P (2009) Integrating rockfall risk assessment and countermeasure design by modeling rechniques. NHESS 9:1059–1073Google Scholar
- Aleotti P (2004) A warning system for rainfall-induced shallow failures. Eng Geol 73:247–265Google Scholar
- Aleotti P, Chowdhury RN (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Environ 58:21–44CrossRefGoogle Scholar
- Armaş I (2011) Weights of evidence method for landslide susceptibility mapping. Prahova Subcarpathians, Romania. Nat Hazards 60:937–950CrossRefGoogle Scholar
- Armaş I (2012) An analytic multicriteria hierarchical approach to assess landslide vulnerability, case study: Cornu village, Subcarpathian Prahova Valley/Romania. Z für Geomorphol 55:209–229CrossRefGoogle Scholar
- Armaş I (2014) Diagnosis of landslide risk for individual buildings: insights from Prahova Subcarpathians, Romania. Environ Earth Sci 71:4637–4646CrossRefGoogle Scholar
- Bălteanu D (1970) Morfodinamica porniturilor de teren pe Valea Apostului (Munţii Buzăului). SCGGG-Geogr XVII:2 (in Romanian)Google Scholar
- Bălteanu D (1980) Măsurători asupra unor procese de creep în perimetrul în perimetrul Staţiunii de Cercetări Geografice Pătârlagele. SCGGG-Geogr XVII (in Romanian)Google Scholar
- Bălteanu D (1983) Experimentul de teren în geomorfologie. Edit. Academiei Române, Bucureşti (in Romanian)Google Scholar
- Bălteanu D, Constantin M (1998) Valley damming by landslides in the Buzău Subcarpathians. Analele Universităţii din Oradea, Ser. Geografie-Geomorfologie VIII(A):33–38Google Scholar
- Bălteanu D, Micu M (2009) Landslide investigation: from morphodynamic mapping to hazard assessment. A case study in the Romanian Subcarpathians, muscel catchment. In: Malet J-Ph, Remaitre A, Bogaard T (eds) Landslide processes. From geomorphologic mapping to dynamic modelling. CERG Editions, Strasbourg, pp 235–241Google Scholar
- Bălteanu D, Micu M (2012) Morphodynamics of the Chirleşti mudflow (Buzău mountains). Rom J Geogr 56(2)Google Scholar
- Bălteanu D, Chendeş V, Sima M, Enciu P (2010) A country-wide spatial assessment of landslide susceptibility in Romania. Geomorphology, Special Issue “Recent advances in landslide investigation” 124(3–4):102–112Google Scholar
- Bell R, Glade T (2004) Landslide risk analysis for Bíldudalur, NW-Iceland. Nat Hazard Earth Syst Sci 4:1–15CrossRefGoogle Scholar
- Birkmann J (2006) Indicators and criteria for measuring vulnerability: theoretical basis and requirements. In: Birkmann J (ed) Measuring vulnerability to natural hazards towards disaster resilient societies. United Nations University, Tokyo, pp 55–77Google Scholar
- Blaikie P, Cannon T, Davis I, Wisner B (1994) At risk—natural hazards, people’s vulnerability, and disasters. Routledge, LondonGoogle Scholar
- Boengiu S, Licurici M, Marinescu E (2008) Landscape changes induced by the mining activity at the contact between the Olteţ Piedmont and Gorj Subcarpathians. GIS applications. Bull Geol Soc Greece XLII(II):74–81Google Scholar
- Boengiu S, Török-Oance M, Vîlcea C (2013) Deep-seated landslides of Seciurile (Getic Piedmont, Romania) and its implication for the settlement. In: Margottini C, Canuti P, Sassa K (eds) Landslide science and practice. Social and economic impact and policies, vol 7. Springer, Berlin-Heidelberg, pp 113–119CrossRefGoogle Scholar
- Brooks N (2003) Vulnerability, risk and adaptation: a conceptual framework. http://www.gsdrc.org/go/display&type=Document&id=3979, pp 1–20. Accessed 7 Nov 2014
- Bunce CM (2008) Risk estimation for railways exposed to landslides. PhD thesis, University of Alberta, Edmonton, CanadaGoogle Scholar
- Cascini L (2008) Applicability of landslide susceptibility and hazard zoning at different scales. Eng Geol 102:164–177CrossRefGoogle Scholar
- Cazacu GB, Draghici G (2011) Identificarea şi determinarea hazardelor naturale – alunecarea de la Seimeni. Revista Română de inginerie civilă 2 (in Romanian)Google Scholar
- Chitu Z, Sandric I, Mihai B, Savulescu I (2009) Evaluate Landslide Susceptibility using Statistical Multivariate Methods: A case-study in the Prahova Subcarpathians, Romania, In: Malet JP, Remaitre A, Borgaard T (Eds) Landslide Processes:From Geological Mapping to Dynamic Modelling, Editions du CERG, Strasbourg, pp. 265–270Google Scholar
- Chiţu Z (2010) Predicţia spaţio-temporală a hazardului la alunecări de teren utilizând tehnici S.I.G. Studiu de caz arealul subcarpatic dintre Valea Prahovei şi Valea Ialomiţei. Manuscript PhD thesis, University of Bucharest (in Romanian)Google Scholar
- Chiţu Z, Istrate A, Adler MJ, Şandric I, Olariu B, Mihai B (2014) Comparative study of the methods for assessing landslide susceptibility in Ialomiţa Subcarpathians, Romania. In: Engineering geology for society and territory, IAEG XII congress volumes. Springer, ISBN 978-3-319-10303-7Google Scholar
- Chowdhury R, Flentje P (2004) Uncertainties in rainfall-induced landslide hazard. Q J Eng GeolHydrogeol 35:61–70CrossRefGoogle Scholar
- Constantin M, Trandafir AC, Jurchescu MC, Ciupitu D (2010) Morphology and environmental impact of the Colţi-Aluniş landslide (Curvature Carpathians), Romania. Environ Earth Sci 59(7):1569–1578CrossRefGoogle Scholar
- Constantin M, Bednarik M, Jurchescu MC, Vlaicu M (2011) Landslide susceptibility assessment using bivariate statistical analysis and the index of entropy in the Sibiciu Basin (Romania). Environ Earth Sci 63:397–406CrossRefGoogle Scholar
- Corominas J (2001) Landslides and climate. In: Proceedings of the 8th international symposium on landslides, vol 4. Cardiff (Galles), pp 1–33Google Scholar
- Corominas J, Mavrouli O (2011) Quantitative risk assessment for buildings due to rockfalls: some achievements and challenges. In: International Journee de Recontre sur les Danger Naturel 2011, Lausanne, Switzerland, 17–18 Feb 2011Google Scholar
- Corominas J, Moya J (2008) A review of assessing landslide frequency for hazard zoning purposes. Eng Geol 102:193–213CrossRefGoogle Scholar
- Corominas J, Copons R, Moya J, Vilaplana J, Altimir J, Amigo J (2005) Quantitative assessment of the residual risk in rockfall protected area. Landslides 2:343–357CrossRefGoogle Scholar
- Corominas J, van Westen CJ, Frattini P, Cascini L, Malet J-P, Fotopoulou S (2014) Recommendations for the quantitative analysis of landslide risk. Bull Eng Geol Environ 73(2):209–263Google Scholar
- Crozier MJ (1986) Climatic triggering of landslide episodes. In: Landslides: causes, consequences and environment. Croom Helm, pp 169–192Google Scholar
- Crozier MJ (1997) The climate-landslide couple: a southern hemisphere perspective. In: Matthews JA, Brunsden D, Frenzel B, Gläser B, Weiß MM (eds) Rapid mass-movement as a source of climatic evidence for the Holocene, vol 19. Gustav Fischer, Stuttgart, pp 333–354Google Scholar
- Crozier MJ (2005) Multiple-occurrence regional landslide events in New Zealand: Hazard management issues. Landslides 2:247–256CrossRefGoogle Scholar
- Crozier MJ, Eyles RJ (1980) Assessing the probability of rapid mass movement. In: Proceedings of the third Australia and New Zealand conference on geomechanics. New Zealand Institute of Engineers, pp 247–251Google Scholar
- Crozier MJ, Glade T (1999) Frequency and magnitude of landsliding: fundamental research issues. Z für Geomorphol, NF Suppl Bd 115:141–155Google Scholar
- Cutter SL, Boruff BJ, Shirley WL (2003) Social vulnerability to environmental hazards. Soc Sci Q 84(2):242–261CrossRefGoogle Scholar
- Dai FC, Lee CF (2003) A spatiotemporal probabilistic modeling of storm-induced shallow landsliding using aerial photographs and logistic regression. Earth Surf Proc Land 28(5):527–545CrossRefGoogle Scholar
- Dai F, Lee C, Ngai Y (2002) Landslide risk assessment and management: an overview. Eng Geol 64(1):65–87CrossRefGoogle Scholar
- Damen M, Micu M, Zumpano V, Van Westen CJ, Sijmons K, Balteanu D (2014) Landslide mapping and interpretation: implications for landslide susceptibility analysis in discontinuous data environment. In: Proceedings of the international conference analysis and management of changing risks for natural hazards, pp 177–186Google Scholar
- Damian R (2003) Controlul structural-geologic si morfologic in stabilitatea versantilor subcarpatici; conditii climatice si hidrologice. In: Armaş I, Damian R, Şandric I, Osaci–Costache G (eds) Vulnerabilitatea versanţilor la alunecări de teren în sectorul subcarpatic al Văii Prahova. Editura Fundaţiei România de Mâine, Bucureşti (in Romanian)Google Scholar
- D’Ecclesiis G, Grassi D, Merenda L, Polemio M, Sdao F (1991) Evoluzione geomorfologica di un’area suburbana di Castronuovo S. In: Andrea PZ (ed) Incidenza delle piogge su alcuni movimenti di massa, Geologia Applicata e Idrogeologia, vol XXVI. Bari, pp 141–163Google Scholar
- Devoli G, Strauch W, Chave G, Hoeg K (2007) A landslide database for Nicaragua: a tool for landslide hazard management. Landslides 4:163–176CrossRefGoogle Scholar
- Dikau R, Brunsden D, Schrott L, Ibsen M-L (1996) Landslides recognition, identification, movement and causes. Wiley, NewYorkGoogle Scholar
- Dinu M, Cioacă A (1997) Precipitation-induced landslides in the Moldavian Plateau (1996–1997). RRG, 41, BucureştiGoogle Scholar
- Dragotă CS (2006) Precipitaţiile excedentare din România. Edit. Academiei Române (in Romanian)Google Scholar
- Dragotă C, Micu M, Micu D (2008) The relevance of pluvial regime for landslide genesis and evolution. Case study: Muscel basin (Buzău Subcarpathians, Romania). In: Present environment and sustainable development, vol 2. Edit. Universităţii “Al. I. Cuza”, Iaşi, pp 242–257Google Scholar
- EC (2010) Commission staff working paper: risk assessment and mapping guidelines for disaster management, SECGoogle Scholar
- Eidsvig U, McLean A, Vangelsten B, Kalsnes B, Ciurean RL, Argyroudis S, Winters M, Mavrouli O (2014) Assessment of socioeconomic vulnerability to landslides using an indicator-based approach: methodology and case studies. Bull Geol Eng Environ 73:307–324CrossRefGoogle Scholar
- Enulescu C (2007) Date statistice privind construcțiile de locuințe în Europa și America de Nord. Construcții 2:61–65 (in Romanian)Google Scholar
- Fell R, Ho K, Lacasse S, Leroi E (2005) A framework for landslide risk assessment and management, state of the art paper 3. In: Proceeding of the international conference on landslide risk management, Vancouver, Canada, 31 May–2 June 2005Google Scholar
- Fisher P (1998) Improved modeling of elevation error with geostatistics. GeoInformatica 2(3):215–233CrossRefGoogle Scholar
- Flage R, Aven T, Zio E, Baraldi T (2014) Concerns, challenges and directions of development for the issue of representing uncertainty in risk assessment. Risk Anal 34(7):1196–1207CrossRefGoogle Scholar
- Flentje P, Chowdhury RN (2002) Frequency of landsliding as part of risk assessment. In: Australian geomechanics news, vol 37(2). Australian Geomechanics Society, Institution of Engineers, Australia, pp 157–167Google Scholar
- Flentje PN, Chowdhury RN, Tobin P, Brizga V (2005) Towards real-time landslide risk management in an urban area. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) International conference on landslide risk management. Taylor & Francis Ltd., Vancouver, Canada, pp 741–751Google Scholar
- Glade T (2000) Modelling landslide triggering rainfall thresholds at a range of complexities. In: Bromhead E, Dixon N, Ibsen M-L (eds) Landslides in research, theory and practice. Thomas Telford, Cardiff, pp 633–640Google Scholar
- Glade T (2003) Vulnerability assessment in landslide risk analysis. Die Erde 134(2):121–138Google Scholar
- Godfrey A, Ciurean RL, van Westen CJ, Kingma NC, Glade T (2015) Assessing vulnerability of buildings to hydro-meteorological hazards using an expert-based approach—an application in Nehoiu Valley, Romania. Int J Disaster Risk Reduction 13:229–241CrossRefGoogle Scholar
- Goodchild MF (1980) Fractals and the accuracy of geographical measures. J Int Assoc Math Geol 12(2):85–98CrossRefGoogle Scholar
- Grozavu A, Mărgărint MC, Patriche CV (2012) Landslide susceptibility assessment in the Brăiești-Sinești sector of Iași Cuesta. Carpath J Earth Environ Sci 7(39–46):201Google Scholar
- Grozavu A, Pleşcan S, Patriche CV, Mărgărint MC, Roşca B (2013) Landslide susceptibility assessment: GIS application to a complex mountainous environment. In: Kozac J et al (eds) The Carpathians: integrating nature and society towards sustainability. Springer, pp 31–44Google Scholar
- Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: an aid to a sustainable development. Geomorphology 31:181–216CrossRefGoogle Scholar
- Guzzetti F, Peruccacci S, Rossi M (2007) Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol Atmos Phys 98:239–267CrossRefGoogle Scholar
- Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang KT (2012) Landslide inventory maps: new tools for an old problem. Earth-Sci Rev 112:42–66CrossRefGoogle Scholar
- Heuvelink GBM (1998) Error propagation in environmental modelling with GIS. In: Research monographs in geographic information systems. Taylor & Francis, LondonGoogle Scholar
- Ichim I (1970) Quelques aspects concernat le rôle des processus de mouvement de mase dans la modelage des versants des montagnes de flysch comprises entre les valles du Cuejdiu et du Nemţişoru. Lucrările Staţiunii de Cercetări Biologice, Geologice şi Geografice “Stejarul” 3:126–133. PângăraţiGoogle Scholar
- Ichim I (1972) Le role des processus de mouvement de masse dans le modelage des monts du flysch (Carpathes Orientales). Acta geographica Debrecina X:209–223Google Scholar
- Ichim I, Bojoi I (1970) Accelerarea modelării reliefului din bazinele hidrografice Pângăraţi şi Oanţu ca urmare a ploii torenţiale din ziua de 28 Aug 1968. Lucrările Staţiunii de Cercetări Biologice, Geologice şi Geografice “Stejarul” 3:105–115. Pângăraţi (in Romanian)Google Scholar
- Ilinca V (2009) Rockfall hazard assessment. Case study: Lotru Valley and Olt Gorge. Rev Geomorfol 11:101–108Google Scholar
- Ilinca V (2010) Valea Lotrului. Studiu de geomorfolgie aplicată. PhD thesis, University of Bucharest (in Romanian)Google Scholar
- Ilinca V (2012) Evaluarea la scară mare a hazardului la căderi de roci. Studiu de caz: un sector din drumul naţional 7A. In: National symposium on geomorphology, Craiova, 19–21 May 2012 (in Romanian)Google Scholar
- Ilinca V (2014) Characteristics of debris flows from the lower part of the Lotru River basin (South Carpathians, Romania). Landslides 11:505–512CrossRefGoogle Scholar
- Ilinca V, Varariu G (2013) Rockfalls assessment along Olt Gorge in the sector between Brezoi and Călimăneşti. In: National symposium on geomorphology, Suceava, 30 May–1 June, Abstract pp 46–47Google Scholar
- Ilinca V, Chiţu Z, Şandric I, Mihai B, Săvulescu I (2008) Rockfall hazard assessment. A case study from Vâlcea County (Romania). In: Geophysical research abstracts, EGU, eISSN:1607–7962Google Scholar
- Institute of Geography of the Romanian Academy (2014) WP5. WATER. D5.2. Report on climate change signals in the Vrancea Seismic Region, ECLISE enabling climate information services for Europe, FP7-ENV-20101, 112 p. http://www.ecliseproject.eu/content/mm_files/do_857/D5.2_RSV_final_report.pdf. Accessed 20 Mar 2015
- ISU Bacău: http://www.isubacau.ro/. Accessed on 10 Mar 2012
- ISU Buzău: http://www.isubuzau.ro/. Accessed on 12 Feb 2014
- ISU Dâmboviţa: http://www.isudb.ro/. Accessed on 14 Feb 2014
- ISU Galaţi http://www.isujgalati.ro/. Accessed on 20 Jan 2014
- ISU Hunedoara: http://isujhunedoara.ro/. Accessed on 12 Mar 2015
- ISU Ialomiţa: http://www.isujialomita.eu/. Accessed on 28 Oct 2014
- ISU Mureş: http://www.isumures.ro/. Accessed on 28 Oct 2014
- ISU Vâlcea: http://www.isuvl.ro/. Accessed on 3 Apr 2014
- Jaedicke et al (2014) Identification of landslide hazard and risk ‘hotspots’ in Europe. 73(2):325–339Google Scholar
- Jaiswal P, van Westen CJ, Jetten V (2011) Quantitative estimation of landslide risk from rapid debris slides on natural slopes in the Nilgiri hills, India. NHESS 11:1723–1743Google Scholar
- Jenks GF (1967) The data model concept in statistical mapping. Int Yearbook Cartogr 7:186–190Google Scholar
- Jurchescu M (2012) Bazinul morfohidrografic al Olteţului. Studiu de geomorfologie aplicată. Manuscript PhD thesis, University of Bucharest (in Romanian)Google Scholar
- Jurchescu M, Bălteanu D, Micu M, Chendeş V, Sima M, Zumpano V (2012) Landslide susceptibility assessment in the Southern part of Vrancea-Buzau Seismic Region. In: Geophysical research abstracts, vol 14. EGU General Assembly 2012, EGU2012–5698Google Scholar
- Jurchescu M, Dragotă C, Marinică I, Grecu F (2013) Reconsidering rainfall thresholds for landslide occurrence events under scarce data constraints. Examples from a hilly area in South-Western Romania. In: Geomorphologia Slovaca et Bohemica, vol 13(1). Bratislava, p 34Google Scholar
- Jurchescu M, Dragota C, Borcan M (2014a) Landslide hazard scenario assessment at a large spatio-temporal scale: the case of a municipality in the getic Subcarpathians, Romania. In: Geophysical research abstracts, vol 16. EGU General Assembly 2014, EGU2014–14733Google Scholar
- Jurchescu M, Dragotă C, Marinică I (2014b) Dezvoltarea la scară medie a unui scenario de hazard legat de alucecările de teren – studiu de caz în bazinul Olteţului. Paper presented at the XXXth national symposium on geomorphology, University of Bucharest, Orşova, 29–31 May 2014 (in Romanian)Google Scholar
- Karssenberg D (2002) Building dynamic spatial environmental models. PhD thesis, Utrecht University, the NetherlandsGoogle Scholar
- Lee CF, Ye H, Yeung MR, Shan X, Chen G (2002) A GIS-based methodology for natural terrain landslide susceptibility mapping in Hong Kong. Episodes 24:150–159Google Scholar
- Li Z, Nadim F, Huang H, Uzielli M, Lacasse S (2010) Quantitative vulnerability estimation for scenario-based landslide hazards. Landslides 7:125–134CrossRefGoogle Scholar
- Lungu D, Arion C, Aldea A, Văcăreanu R (2007) Seismic hazard, vulnerability and risk for Vrancea events. In: International symposium on strong Vrancea earthquakes and risk mitigation, Bucharest, Romania, 4–6 Oct 2007Google Scholar
- Macovei G, Botez G (1923) Comunicare asupra fenomeneor de alunecări şi prăbuşiri de teren din judeţul Râmnicul Sărat. D.S. ale Inst. Geol. Român (1914–1915), Bucureşti (in Romanian)Google Scholar
- Mărgarint MC, Niculita M (2014) Comparison and validation of logistic regression and analytic hierarchy process models of landslide susceptibility in monoclinic regions. A case study in Moldavian Plateau, NE Romania. In: EGU2014–6371, Geophys research abstracts, vol. 16Google Scholar
- Mărgărint MC, Niculiţă M (2015) Landslide type and spatial pattern in Moldavian Plateau. In: Rădoane M, Vespremeanu-Stroe A (2015) Landform dynamics and evolution in Romania. SpringerGoogle Scholar
- Mărgarint MC, Grozavu A, Patriche CV, Tomasciuc AMI, Urdea R, Ungurianu I (2011) Évaluation des risques de glissements de terrain par la méthode de la régression logistique: application à deux zones basses de Roumanie. Dynam Environ 28:41–50Google Scholar
- Mărgărint MC, Grozavu A, Patriche CV (2013a) Assessing the spatial variability of coefficients of landslide predictors in different regions of Romania using logistic regression. Nat Hazards Earth Syst Sci 13:3339–3355CrossRefGoogle Scholar
- Mărgărint M, Juravle D, Grozavu A, Patriche C, Pohrib M, Stângă I (2013b) Large landslide risk assessment in hilly areas. A case study of Huşi town region (north-east of Romania). Ital J Eng Geol Environ Book Ser 6:275–286Google Scholar
- Martha TR (2010) Characterising spectral, spatial and morphometric properties of landslides for semi-automatic detection using object-oriented methods. Geomorphology 116(1–2):24–36CrossRefGoogle Scholar
- Mavrouli O (2014) Vulnerability assessment for reinforced concrete buildings exposed to landslides. Bull Eng Geol Environ 73:265–289 Google Scholar
- Mazzorana B, Zischg A, Largiader A, Hubl J (2009) Hazard index maps for woody material recruitment and transport in alpine catchments. Nat Hazards Earth Syst Sci 9:197–209CrossRefGoogle Scholar
- Micu M (2008) Evaluarea hazardului legat de alunecări de teren în Subcarpaţii dintre Buzău şi Teleajen. Manuscript PhD thesis, Institute of Geography, Bucharest (in Romanian)Google Scholar
- Micu M (2011) Landslide assessment: from field mapping to risk management. A case - study in the Buzău Subcarpathians, Forum geografic. Studii și cercetări de geografie și protecţia mediului Volume 10, Issue 1/ June 2011, doi: 10.5775/fg.2067-4635.2011.021
- Micu M, Bălteanu D (2009) Landslide hazard assessment in the Bend Carpathians and Subcarpathians, Romania. Z Geomorphol 53(Supplement 3):49–64Google Scholar
- Micu M, Bălteanu D (2013) A deep-seated landslide dam in the Siriu Reservoir, Bend Carpathians—Romania. Landslides 10(3):323–329CrossRefGoogle Scholar
- Micu M, Chendeş V, Sima M, Bălteanu D, Micu D, Dragotă C (2010) A multi-hazard assessment in the Bend Carpathians of Romania. In: Glade T, Casagli N, Malet JP (eds) Mountain risks: bringing science to the society. CERG Editions, StrasbourgGoogle Scholar
- Micu M, Bălteanu D, Micu D, Zarea R, Ruţă R (2013) 2010-landslides in the Romanian Curvature Carpathians. In: Loczy D (ed) Extreme weather and geomorphology. Springer, pp 251–265. doi: 10.1007/978-94-007-6301-2
- Micu M, Jurchescu M, Micu D, Zarea R, Zumpano V, Bălteanu D (2014a) A morphogenetic insight into a multi-hazard analysis: Bâsca Mare landslide dam. Landslides. doi: 10.1007/s10346-014-0519-4
- Micu M, Malet JP, Bălteanu D, Mărgărint C, Niculiţă M, Jurchescu M, Chitu Z, Şandric I, Simota, C, Mathieu A (2014b) Typologically-differentiated landslide susceptibility assessment for Romania. In: Geophysical research abstracts, vol 16, EGU2014–13315Google Scholar
- Micu M, Bălteanu D, Zumpano V, Kucsicsa G, Popovici A, Jurchescu M, Micu D (2015) Landslide hazard assessment in the Curvature Carpathians and Subcarpathians of Romania: between necessity and uncertainties (in prep.)Google Scholar
- Mihai B (2005) Timiş mountains (Curvature Carpathians): geomorphic potential and mountain landscape planning. Edit. Universităţii din BucureştiGoogle Scholar
- Mihai B, Săvulescu I (2006) Data collection and analysis for the GIS large scale geomorphic hazard and risk mapping in mountain towns and resorts. A case study in Predeal town, Curvature Carpathians. Rev Geomorfol 8:85–93Google Scholar
- Mihai B, Şandric I, Săvulescu I, Chiţu Z (2009) Detailed mapping of landslide susceptibility for urban planning purposes in Carpathian and Subcarpathian towns of Romania. In: Gartner G, Ortag F (eds) Cartography in central and eastern Europe. Lecture notes in geoinformation and cartography. Springer, Heidelberg/Berlin, pp 417–429CrossRefGoogle Scholar
- Nadim F, Einstein H, Roberds W (2005) Probabilistic stability analysis for individual slopes in soil and rock, state of the art paper 3. In: Proceedings of the international conference of landslide risk assessment, Vancouver, Canada, 31 May–2 June 2005Google Scholar
- Naum T, Michalevich V (1956) Contribuţii la cunoaşterea degradărilor de teren din Carpaţii de la Curbură. An Univ CI Parhon 9:213–241 (in Romanian)Google Scholar
- Nicorici C, Gray J, Imbroane AM, Barbosu, M (2012) GIS susceptibility maps for shallow landslides: a case study in Transylvania, Romania. Carpath J Earth Environ Sci 7:83–92Google Scholar
- Paté-Cornell ME (1996) Uncertainty in risk analysis: six levels of treatment. Reliab Eng Syst Saf 54:95–111CrossRefGoogle Scholar
- Pellicani R, van Westen CJ, Spilotro G (2014) Assessing landslide exposure in areas with limited landslide information. Landslides 11(3):463–480CrossRefGoogle Scholar
- Perrault M, Geuguen P, Aldea A, Demetriu S (2013) Using experimental data to reduce the single-building sigma of fragility curves: case study of the BRD tower in Bucharest, Romania. Earthquake Eng Eng Vib 12:643–658CrossRefGoogle Scholar
- Petschko H, Brenning A, Bell R, Goetz J, Glade T (2014) Assessing the quality of landslide susceptibility maps—case study Lower Austria. Nat Hazards Earth Syst Sci 14:95–118CrossRefGoogle Scholar
- Pop O, Surdeanu V, Irimuş IA, Guitton M (2010) Distribution spatiale des coulées de debris contemporaines dans le Massif du Căliman (Roumanie). Studia Universitatis Babeş-Bolyai, Geographia, Cluj-Napoca 55(1):33–44Google Scholar
- Pujină D (1998) Cercetări asupra unor procese de alunecare a terenurilor agricole din Podișul Bârladului și contribuții privind tehnica de amenajare a acestora. Manuscript PhD thesis, “Gh. Asachi”, Iași University (in Romanian)Google Scholar
- Rădoane N (2003) A new natural dam lake in the catchment of Bistriţei Moldoveneşti – Lake Cuejdel. Studii şi Cercetări de Geografie, Tom XLIX-L:211–216Google Scholar
- Rădoane M, Rădoane N (2007) Applied geomorphology. Edit. Universităţii din Suceava, SuceavaGoogle Scholar
- Rădoane M, Rădoane N, Ichim I (1995) Folosirea metodei cubului matricial în evaluarea susceptibilităţii la alunecări de teren. Caz studiu: judeţul Neamţ. Studii și cercetări de geografie, t 40:111–118 (in Romanian)Google Scholar
- Regmi NR, Giardino JR, McDonald EV, Vitek JD (2013) A comparison of logistic regression-based models of susceptibility to landslides in western Colorado, USA. Landslides 11:247–262CrossRefGoogle Scholar
- Riedmann M, Bindrich M, Damen M, Van Westen CJ, Micu M (2014) Generating a landslide inventory map using stereo photo interpretation and radar interferometry techniques, a case study from the Buzău area, Romania. In: Proceedings of the international conference analysis and management of changing risks for natural hazards, pp 571–577Google Scholar
- Rossi M, Witt A, Guzzetti F, Malamud BD, Peruccacci S (2010) Analysis of historical landslide time series in the Emilia-Romagna region, Northern Italy. Earth Surf Process Landforms 35(10):1123–1137CrossRefGoogle Scholar
- Rougier J, Sparks S, Hill LJ (2013) Risk and uncertainty assessment for natural hazards. In: Rougier J, Sparks S, Hill L (eds). Cambridge Unversity PressGoogle Scholar
- Rowe W (1994) Understanding uncertainty. Risk Anal 14(95):743–750CrossRefGoogle Scholar
- Sandi H, Pomonis A, Francis S, Georgescu E, Mohindra R, Borcia I (2008) Seismic vulnerability assessment. Methodological elements and applications to the case of Romania. Construcții 2:5–17Google Scholar
- Şandric I (2005) Aplicaţii ale teoriei probabilitatilor condiţionate în geomorfologie. Analele Universităţii Bucureşti 54:83–97 (in Romanian)Google Scholar
- Şandric I (2008) Sistem informaţional geografic temporal pentru analiza hazardelor naturale. O abordare bayesiană cu propagare a erorilor. Manuscript PhD thesis, University of Bucharest (in Romanian)Google Scholar
- Şandric I (2009) Landslide inventory for the administrative area of Breaza, Curvature Subcarpathians, România. J Maps 5(1):75–86CrossRefGoogle Scholar
- Şandric I (2010) Object-oriented methods for landslides detection using high resolution imagery, morphometric properties and meteorological data. In: International archives of the photogrammetry, remote sensing and spatial information sciences—ISPRS archives. International Society for Photogrammetry and Remote Sensing, pp 486–491Google Scholar
- Şandric I (2011) Landslide susceptibility for the administrative area of Breaza, Prahova County, Curvature Subcarpathians, România. J Maps 7(1):552–563CrossRefGoogle Scholar
- Şandric I (2015) Analysis of uncertainty propagation from GIS data into landslides susceptibility assessment. Geomorphology (Submitted)Google Scholar
- Şandric I, Chiţu Z (2009) Landslide inventory for the administrative area of Breaza, Curvature Subcarpathians, Romania. J Maps 7:75–86. doi: 10.4113/jom.2009.1051 CrossRefGoogle Scholar
- Sandu M (1999) Alunecarea de la Lacul lui Baban. Stadiu de evoluţie. Revista Geografică, t. V, Bucureşti (in Romanian)Google Scholar
- Scaioni A, Longoni L, Melillo V, Papini M (2014) Remote sensing for landslide investigations: an overview of recent achievements and perspectives. Remote Sens 6–10:9600–9652CrossRefGoogle Scholar
- Schmidt J, Dikau R (2004) Modelling historical climate variability and slope stability. Geomorphology 60:433–447CrossRefGoogle Scholar
- Sima M (2011) Mining and river pollution in Metaliferi mountains. Applications in the Crisul Alb and Certej river basins. Edit. Academiei Române, BucureștiGoogle Scholar
- Simon N, Crozier M, de Roiste M, Rafek AG (2013) Point based assessment: selecting the best way to represent landslide polygon as point frequency in landslide investigation. Electron J Geotech Eng 18:775–784Google Scholar
- Sorocovschi V (2007) Vulnerabilitatea, componentă a riscului. Concept, variabile de control, tipuri şi modele de evaluare. In: Riscuri și catastrofe, VI, Casa Cărții de Știință, Cluj-Napoca, pp 58–69 (in Romanian)Google Scholar
- Stângă I, Grozavu A (2012) Quantifying human vulnerability in rural areas—case study of Tutova hills (Eastern Romania). NHESS 12:1987–2001Google Scholar
- Stângă I, Rusu C (2006) The concepts of vulnerability and resilience used in natural risk analysis. Buletinul Societătii de Geografie din România 12:129–142Google Scholar
- Ştefănescu M (1995) Stratigraphy and structure of Cretaceous and Paleogene flysch deposits between Prahova and Ialomiţa valleys. Rom J Tectonics Reg Geol. Institutul Geologic al României, BucureştiGoogle Scholar
- Surdeanu V (1996) La repartition des glissements de terrain dans le Carpates Orientales (zone du flysch). Geografia Fisica e Dinamica Quaternaria 19(2):265–271Google Scholar
- Surdeanu V (1998) Geografia terenurilor degradate. I. Landslides. Edit. Presa Universitară Clujeană, Cluj-Napoca (in Romanian)Google Scholar
- Surdeanu V, Rus I, Irimuş IA, Petrea D, Cocean P (2009) Rainfall influence on landslide dynamics (Carpathian Flysch Area, Romania). Geografia Fisica e Dinamica Quaternaria 32(1):89–94Google Scholar
- Surdeanu V, Pop O, Chiaburu M, Dulgheru M, Anghel T (2010) La dendrogéomorphologie appliquée a l’étude des processus géomorphologiques des zones minières dans le Massif du Calimani (Carpates Orientales, Roumanie). In: Surdeanu V, Stoffel M, Pop O (eds) Dendrogéomorphologie et dendroclimatologie—méthodes de reconstitution des milieux géomorphologiques et climatiques des régions montagneuses. Presa Universitară Clujeană, Cluj-Napoca, pp 107–124Google Scholar
- Tanislav D, Costache A, Murătoreanu G (2009) Vulnerability to natural hazards in Romania. Forum Geografic, Studii si cercetări de geografie și protectia mediului 8(8):131–138Google Scholar
- Tate E (2012) Uncertainty analysis for a social vulnerability index. Ann Assoc Am Geogr 10:1–18Google Scholar
- Terranova O, Antronico L, Gulla G (2007) Landslide triggering scenarios in homogeneous geological contexts: the area surrounding Acri (Calabria, Italy). Geomorphology 87(4):250–267CrossRefGoogle Scholar
- Thiebes B (2012) Landslide analysis and early warning systems. Local and regional case study in the Swabian Alb, Germany. Springer Theses. Springer, Berlin HeidelbergGoogle Scholar
- Thiery MY, Malet J-P, Sterlacchini S, Puissant A, Maquaire O (2007) Landslide susceptibility assessment by bivariate methods at large scales: application to a complex mountainous environment. Geomorphology 9(1–2):38–59CrossRefGoogle Scholar
- Turner B, Kasperson R, Matson R, McCarthy J, Corell L, Christensen R (2003) A framework for vulnerability analysis in sustainability science. In: Proceedings of the national academy of sciences of the USGoogle Scholar
- UN-ISDR (2004) Living with risk: a global reviews of disaster reduction initiatives, vol 1. United Nations, New York and GenevaGoogle Scholar
- UN-ISDR (2009) Terminology on Disaster Risk Reduction, United Nations, New York and GenevaGoogle Scholar
- Uzielli M, Nadim F, Lacasse S, Kaynia AM (2008) A conceptual framework for quantitative estimation of physical vulnerability to landslides. Eng Geol 102(3–4):251–256CrossRefGoogle Scholar
- Van Asch TWJ (1997) The temporal activity of landslides and its climatological signals. In: Matthews JA, Brunsden D, Frenzel B, Gläser B, Weiß MM (eds) Rapid mass movement as a source of climatic evidence for the holocene. Palaeoclimate research, vol 19. Gustav Fischer, Stuttgart, pp 7–16Google Scholar
- Van Den Eeckhaut M, Hervás J (2012a) State of the art of national landslide database in Europe and their potential for assessing landslide susceptibility, hazard and risk. Geomorphology 139–140:545–558CrossRefGoogle Scholar
- Van Den Eeckhaut M, Hervás J (2012b) Landslide inventories in Europe and policy recommendations for their interoperability and harmonization. A JRC contribution to the EU-FP7 safeland project. Luxembourg Publications Office of the European UnionGoogle Scholar
- Van Den Eeckhaut M, Poesen J, Vandekerckhove L, Van Gils M, Van Rompaey A (2010) Human-environment interactions in residential areas susceptible to landsliding: the Flemish Ardennes case study. Area 42(3):339–358CrossRefGoogle Scholar
- Van Westen CJ, van Asch T, Soeters R (2006) Landslide hazard and risk zonation—why is it still so difficult? Bull Eng Geol Environ 65(167):184Google Scholar
- Van Westen CJ, Castellanos E, Kuriakose SL (2008) Spatial data for landslide susceptibility, hazard, and vulnerability assessement: an overview. Eng Geol 102:112–131CrossRefGoogle Scholar
- Van Westen CJ, Bakker WH, Andrejchenko V, Zhang K, Berlin J, Cristal I, Olyazadeh R (2014) Roskchanges: a spatial decision support system for analyzing changing hydro-meteorological risk. In: Proceedings of the international conference analysis and management of changing risks for natural hazards, Padua, Italy, 18–19 Nov 2014Google Scholar
- Varnes DJ (1984) Landslide hazard zonation, a review of principles and practice. IAEG Commission on Landslides, UNESCO, ParisGoogle Scholar
- Walker BF (2007) Rainfall data analysis and relation to the incidence of landsliding at Newport. Aus Geomech 42(1)Google Scholar
- White ID, Mottershead DN, Harrison JJ (1996) Environmental systems, 2nd edn. Chapman & Hall, LondonCrossRefGoogle Scholar
- Wieczorek GF (1987) Effect of rainfall intensity and duration on debris flows in central Santa Cruz Mountains. In: Costa JE, Wieczorek GF (eds) Debris flow/avalanches: process, recognition, and mitigation. Geological Society of America. Reviews in engineering geology, vol 7, pp 93–104Google Scholar
- Winter M, Smith J, Fotopoulou S, Pitilakis K, Mavrouli O, Corominas J, Argyroudis S (2014) An expert judgment approach to determining the physical vulnerability of roads to debris flow. Bull Eng Geol Environ 73(2):291–305CrossRefGoogle Scholar
- Wisner B, Blaikie P, Cannon T, Davis I (2004) Natural hazards, people’s vulnerability and disasters, 2nd edn. Routledge, London, New YorkGoogle Scholar
- Zêzere JL, Reis E, Garcia R, Oliveira S, Rodrigues ML, Vieira G, Ferreira AB (2004a) Integration of spatial and temporal data for the definition of different landslide hazard scenarios in the area north of Lisbon (Portugal). Nat Hazards Earth Syst Sci 4:133–146CrossRefGoogle Scholar
- Zêzere JL, Rodrigues ML, Reis E, Garcia R, Oliveira S, Vieira G, Ferreira AB (2004b) Spatial and temporal data management for the probabilistic landslide hazard assessment considering landslide typology. In: Lacerda E, Fontoura S (eds) Landslides: evaluation and stabilization. Taylor & Francis Group, London, pp 117–123Google Scholar
- Zêzere J, Garcia R, Oliviera S, Reis E (2008) Probabilistic landslide risk analysis considering direct costs in the area north of Lisbon (Portugal). Geomorphology 94:4467–4495CrossRefGoogle Scholar
- Zumpano V, Hussin H, Reichenbach P, Bãlteanu D, Micu M, Sterlacchini S (2014) A landslide susceptibility analysis for Buzãu County, Romania. Revue Roumaine de Geographie/Rom J Geogr 58(1)Google Scholar