Skip to main content

Intelligent Vehicles

  • Chapter
  • First Online:
Springer Handbook of Robotics

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter describes the emerging robotics application field of intelligent vehicles – motor vehicles that have autonomous functions and capabilities. The chapter is organized as follows. Section 62.1 provides a motivation for why the development of intelligent vehicles is important, a brief history of the field, and the potential benefits of the technology. Section 62.2 describes the technologies that enable intelligent vehicles to sense vehicle, environment, and driver state, work with digital maps and satellite navigation, and communicate with intelligent transportation infrastructure. Section 62.3 describes the challenges and solutions associated with road scene understanding – a key capability for all intelligent vehicles. Section 62.4 describes advanced driver assistance systems, which use the robotics and sensing technologies described earlier to create new safety and convenience systems for motor vehicles, such as collision avoidance, lane keeping, and parking assistance. Section 62.5 describes driver monitoring technologies that are being developed to mitigate driver fatigue, inattention, and impairment. Section 62.6 describes fully autonomous intelligent vehicles systems that have been developed and deployed. The chapter is concluded in Sect. 62.7 with a discussion of future prospects, while Sect. 62.8 provides references to further reading and additional resources.

figure a

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-D:

three-dimensional

ABRT:

automated bus rapid transit

ACC:

adaptive cruise control

ADAS:

advanced driving assistance system

AHS:

advanced highway system

automated highway system

AIST:

Institute of Advanced Industrial Science and Technology

BRT:

bus rapid transit

CACC:

cooperative adaptive cruise control

CALM:

communication access for land mobiles

CD:

compact disc

CIE:

International Commission on Illumination

CVIS:

cooperative vehicle infrastructure system

DARPA:

Defense Advanced Research Projects Agency

DGPS:

differential global positioning system

DSRC:

dedicated short-range communications

ECG:

electrocardiogram

GCDC:

Grand Cooperative Driving Challenge

GID:

geometric intersection data

GLS:

global navigation satellite system

GPRS:

general packet radio service

GPS:

global positioning system

HTAS:

high tech automotive system

IETF:

internet engineering task force

IMTS:

intelligent multimode transit system

IMU:

inertial measurement unit

IP:

internet protocol

IST:

Information Society Technologies

LED:

light-emitting diode

MEL:

Mechanical Engineering Laboratory

MHT:

multihypothesis tracking

NEMO:

network mobility

OBU:

on board unit

OECD:

Organization for Economic Cooperation and Development

PC:

personal computer

RALPH:

rapidly adapting lane position handler

RFID:

radio frequency identification

RSU:

road side unit

SLAM:

simultaneous localization and mapping

SMS:

short message service

SPaT:

signal phase and timing

TRC:

Transportation Research Center

UBM:

Universität der Bundeswehr Munich

WAVE:

wireless access in vehicular environments

References

  1. J. Ibañez-Guzmán, C. Laugier, J.-D. Yoder, S. Thrun: Autonomous Driving: Context and state-of-the Art. In: Handbook of Intelligent Vehicles, ed. by A. Eskandarian (Springer, Berlin, Heidelberg 2012)

    Google Scholar 

  2. R.E. Fenton, R.J. Mayhan: Automated highway studies at the Ohio State University – An overview, IEEE Trans. Veh. Technol. 40(1), 100–113 (1991)

    Article  Google Scholar 

  3. Society of Automotive Engineers (SAE): J2735 Dedicated Short Range Communications (DSRC) Message Set Dictionary (2009)

    Google Scholar 

  4. E.D. Dickmanns: The development of machine vision for road vehicles in the last decade, IEEE Intell. Veh. Symp., Vol. 1 (2002) pp. 268–281

    Google Scholar 

  5. A. Broggi, M. Bertozzi, A. Fascioli, G. Conte: Automatic Vehicle Guidance: The Experience of the ARGO Autonomous Vehicle (World Scientific, Singapore 1999)

    Book  MATH  Google Scholar 

  6. C.E. Thorpe (Ed.): Vision and Navigation: The Carnegie Mellon Navlab (Kluwer, Boston 1990)

    Google Scholar 

  7. E.D. Dickmanns, B.D. Mysliwetz: Recursive 3-D road and relative ego-state recognition, IEEE Trans. Pattern. Anal. Mach. Intell. 14(2), 199–213 (1992)

    Article  Google Scholar 

  8. D. Pomerleau, T. Jochem: Rapidly adapting machine vision for automated vehicle steering, IEEE Intell. Syste. 11(2), 19–27 (1996)

    Google Scholar 

  9. A. Eskandarian (Ed.): Handbook of Intelligent Vehicles (Springer, Berlin, Heidelberg 2012)

    Google Scholar 

  10. Ü. Özgüner, T. Acarman, K. Redmill: Autonomous Ground Vehicles (Artech House, Boston 2011)

    Google Scholar 

  11. S. Kato, S. Tsugawa, K. Tokuda, T. Matsui, H. Fujii: Vehicle control algorithms for cooperative driving with automated vehicles and intervehicle communications, IEEE Trans. Intell. Transp. Syst. 3(3), 155–161 (2002)

    Article  Google Scholar 

  12. US Department of Transport, Research and Innovative Technology Administration: Guide to federal intelligent transportation system (ITS) research, http://ntl.bts.gov/lib/48000/48300/48313/9E878E25_OnlinePDF.pdf (2013)

  13. DARPA Grand Challenge Web Site: http://archive.darpa.mil/grandchallenge05/

  14. K. Iagnemma, M. Buehler (Eds.): Journal of Field Robotics, Special issues on the DARPA Grand Challenge, Vol. 23, No. 8/9 (Wiley, Hoboken 2006)

    Google Scholar 

  15. Department of Defense, Washington: Darpa Grand Challenge, http://archive.darpa.mil/grandchallenge/ (2007)

  16. J. Ploeg, S. Shladover, H. Nijmeijer, N. Van De Wouw: Introduction to the special issue on the 2011 grand cooperative driving challenge, IEEE Trans. Intell. Transp. Syst. 13(3), 989–993 (2012)

    Article  Google Scholar 

  17. A. Broggi, P. Cerri, M. Felisa, M.C. Laghi, L. Mazzei, P.P. Porta: The VisLab intercontinental autonomous challenge: An extensive test for a platoon of intelligent vehicles, Intl. J. Veh. Auton. Syst. 10(3), 147–164 (2012)

    Article  Google Scholar 

  18. M. Bertozzi, A. Broggi, A. Coati, R.I. Fedriga: A 13 000 km intercontinental trip with driverless vehicles: The VIAC experiment, IEEE Intell. Transp. Syst. Mag. 5(1), 28–41 (2013)

    Article  Google Scholar 

  19. A. Broggi, P. Medici, P. Zani, A. Coati, M. Panciroli: Autonomous vehicles control in the VisLab intercontinental autonomous challenge, Annu. Rev. Control 36(1), 161–171 (2012)

    Article  Google Scholar 

  20. L. Vlacic, M. Parent, F. Harashima: EDS Intelligent Vehicle Technologies, Theory and Applications (Butterworth-Heinemann, Oxford 2001)

    Google Scholar 

  21. M. Hirota, Y. Nakajima, M. Saito, M. Uchiyama: Low-cost infrared imaging sensors for automotive application. In: Advanced Microsystems for Automotive Applications, VDI-Buch, ed. by J. Valldorf, W. Gessner (Springer, Berlin, Heidelberg 2004)

    Google Scholar 

  22. M. Hikita: An introduction to ultrasonic sensors for vehicle parking, http://www.newelectronics.co.uk/electronics-technology/an-introduction-to-ultrasonic-sensors-for-vehicle-parking/24966/(2010)

  23. M. Klotz, H. Rohling: 24 GHz radar sensors for automotive applications, Int. Conf. Microw. Radar Wirel. Commun. (MIKON), Vol. 1 (2000) pp. 359–362

    Google Scholar 

  24. A. Ewald, V. Willhoeft: Laser scanners for obstacle detection in automotive applications, IEEE Intell. Veh. Symp. (2000) pp. 682–687

    Google Scholar 

  25. C. Laugier, I. Paromtchik, M. Perrollaz, M. Yong, J. Yoder, C. Tay, K. Mekhnacha, A. Negre: Probabilistic analysis of dynamic scenes and collision risks assessment to improve driving safety, IEEE Intell. Transp. Syst. Mag. 3(4), 4–19 (2011)

    Article  Google Scholar 

  26. S. Lefèvre, C. Laugier, J. Ibañez-Guzmán: Risk assessment at road intersections: Comparing intention and expectation, IEEE Intell. Veh. Symp. (2012) pp. 165–171

    Google Scholar 

  27. I. Skog, P. Handel: In-car positioning and navigation technologies – A survey, IEEE Trans. Intell. Transp. Syst. 10(1), 4–21 (2009)

    Article  Google Scholar 

  28. TomTom: Manufacturer of navigation systems and how they work, http://www.tomtom.com/howdoesitwork/

  29. Ertico: ActMAP an EU Project for Dynamic Map Updating, http://www.ertico.com/actmap (2007)

  30. S. Rogers, W. Zhang: Development and evaluation of a curve rollover warning system for trucks, IEEE Intell. Veh. Symp. (2003) pp. 294–297

    Google Scholar 

  31. D. Vaughan: Vehicle speed control based on GPS/MAP matching of posted speeds, Patent US 5485161 (1996)

    Google Scholar 

  32. H. Sabel, M.R. Herbst: The map as a component in advanced driver assistance systems, Proc. 7th World Cong. Intell. Syst. (2000)

    Google Scholar 

  33. Q. Ji, X. Yang: Real-time eye, gaze, and face pose tracking for monitoring driver vigilance, Real-Time Imaging 8(5), 357–377 (2002)

    Article  MATH  Google Scholar 

  34. J.B. Kenney: Dedicated short-range communications (DSRC) standards in the United States, Proceedings IEEE 99(7), 1162–1182 (2011)

    Article  Google Scholar 

  35. Y. Ohshima: Control system for automatic driving, Proc. IFAC Tokyo Symp. Syst. Eng. Control Syst. Des. (1965)

    Google Scholar 

  36. S. Biddlestone, K. Redmill, R. Miucic, Ü. Özgüner: An integrated 802.11p WAVE DSRC and vehicle traffic simulator with experimentally validated urban (LOS and NLOS) propagation models, IEEE Trans. Intell. Transp. Syst. 13(4), 1792–1802 (2012)

    Article  Google Scholar 

  37. T. Schaffnit: Automotive standardization of vehicle networks. In: Vehicular Networking: Automotive Applications and Beyond, ed. by M. Emmelmann, B. Bochow, C.C. Kellum (Wiley, Chichester 2010)

    Google Scholar 

  38. L. Le, A. Festag, R. Baldessari, W. Zhang: CAR-2-X Communication in Europe. In: Vehicular Networks: From Theory to Practice, ed. by S. Olariu, M.C. Weigle (CRC, Boca Raton 2008)

    Google Scholar 

  39. T. Ernst: The information technology era of the vehicular industry, ACM SIGCOMM Comput. Commun. Rev. 36(2), 49–52 (2006)

    Article  Google Scholar 

  40. CALM working group producing standards and specifications: http://calm.its-standards.eu/

  41. CVIS: Cooperative Vehicle-Infrastructure Systems, http://www.cvisproject.org/

  42. D.M. Gavrila, U. Franke, C. Wöhler, S. Görzig: Real-time vision for intelligent vehicles, IEEE Instr. Meas. Mag. 4(2), 22–27 (2001)

    Article  Google Scholar 

  43. Japanese advanced safety vehicle project: http://www.mlit.go.jp/road/ITS/pdf/ITSinitiativesJapan_OnlinePDF.pdf

  44. J.C. McCall, M.M. Trivedi: Video-based lane estimation and tracking for driver assistance: Survey, system, and evaluation, IEEE Trans. Intell. Transp. Syst. 7(1), 20–37 (2006)

    Article  Google Scholar 

  45. N.E. Apostoloff, A. Zelinsky: Robust vision based lane tracking using multiple cues and particle filtering, IEEE Intell. Veh. Symp. (2003) pp. 558–563

    Google Scholar 

  46. Q. Baig, M. Perrollaz, C. Laugier: A robust motion detection technique for dynamic environment monitoring. A framework for grid-based monitoring of the dynamic environment, IEEE Robotics Autom. Mag. 21(1), 40–48 (2014)

    Article  Google Scholar 

  47. M.R. Blas, M. Agrawal, A. Sundaresan, K. Konolige: Fast color/texture segmentation for outdoor robots, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2008)

    Google Scholar 

  48. D.M. Gavrila, V. Philomin: Real-time object detection for smart vehicles, Proc. 7th IEEE Int. Conf. Comp. Vis., Vol. 1 (1999) pp. 87–93

    Google Scholar 

  49. G. Piccioli, E. De Micheli, P. Parodi, M. Campani: Robust method for road sign detection and recognition, Image Vis. Comput. 14(3), 209–223 (1996)

    Article  Google Scholar 

  50. C. Bahlmann, Y. Zhu, R. Visvanathan, M. Pellkofer, T. Koehler: A system for traffic sign detection, tracking, and recognition using color, shape, and motion information, IEEE Intell. Veh. Symp. (2005) pp. 255–260

    Google Scholar 

  51. U. Franke, A. Joos: Real-time stereo vision for urban traffic scene understanding, Proc. IEEE Intell. Veh. Symp. (2000) pp. 273–278

    Google Scholar 

  52. Nissan safety vehicle that interacts with infrastructure: http://www.nissan-global.com/EN/TECHNOLOGY/OVERVIEW/vii.html

  53. N. Hautiere, R. Labayrade, D. Aubert: Estimation of the visibility distance by stereovision: A Generic Approach, IEICE Trans. Inf. Syst. E89-D(7), 2084–2091 (2006)

    Article  Google Scholar 

  54. A. Petrovskaya, M. Perrollaz, L. Oliveira, L. Spinello, R. Triebel, A. Makris, J.D. Yoder, C. Laugier, U. Nunes, P. Bessiere: Awareness of road scene participants for autonomous driving. In: Handbook of Intelligent Vehicles, ed. by A. Eskandarian (Springer, Berlin, Heidelberg 2012)

    Google Scholar 

  55. R. Labayrade, D. Aubert, J.P. Tarel: Real time obstacle detection in stereo vision on non flat road geometry through V-disparity representation, Proc. IEEE Intell. Veh. Symp., Vol. 2 (2002) pp. 646–651

    Google Scholar 

  56. Z. Sun, G. Bebis, R. Miller: On-road vehicle detection: A review, IEEE Trans. Pattern Anal. Mach. Intell. 28(5), 694–711 (2006)

    Article  Google Scholar 

  57. E. Segawa, M. Shiohara, S. Sasaki, N. Hashiguchi, T. Takashima, M. Tohno: Preceding vehicle detection using stereo images and non-scanning millimeter-wave radar, IEICE Trans. Inf. Syst. E89-D(7), 2101–2108 (2006)

    Article  Google Scholar 

  58. T. Kato, Y. Ninomiya, I. Masaki: An obstacle detection method by fusion of radar and motion stereo, IEEE Trans. Intell. Transp. Syst. 3(3), 182–188 (2002)

    Article  Google Scholar 

  59. C. Coué, C. Pradalier, C. Laugier, T. Fraichard, P. Bessiere: Bayesian occupancy filtering for multitarget tracking: An automotive application, Int. J. Robotics Res. 25(1), 19–30 (2006)

    Article  Google Scholar 

  60. M. Oren, C. Papageorgiou, P. Sinha, E. Osuna, T. Poggio: Pedestrian detection using wavelet templates, IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (1997) pp. 193–199

    Google Scholar 

  61. L. Zhao, C.E. Thorpe: Stereo- and neural network-based pedestrian detection, IEEE Trans. Intell. Transp. Syst. 01(3), 148–154 (2000)

    Article  Google Scholar 

  62. D. Pomerleau: Ralph: Rapidly adapting lateral position handler, IEEE Symp. Intell. Veh. (1995) pp. 506–511

    Google Scholar 

  63. US DOT: Intelligent vehicle initiative program, http://ntl.bts.gov/lib/jpodocs/repts_pr/14153.htm (2005)

  64. Blind Spot Detection products: http://auto.howstuffworks.com/car-driving-safety/safety-regulatory-devices/cars-making-blind-spot-less-dangerous1.htm

  65. L. Matuszyk, A. Zelinsky, L. Nilsson, M. Rilbe: Stereo panoramic vision for monitoring vehicle blind-spots, IEEE Intell. Veh. Symp. (2004) pp. 31–36

    Google Scholar 

  66. Volvo Blind Spot Information System (BLIS): http://www.gizmag.com/go/2937/

  67. Automotive night vision systems: http://electronics.howstuffworks.com/gadgets/automotive/in-dash-night-vision-system3.htm

  68. Radar-vision fusion for pedestrian detection: http://www.mobileye.com/technology/applications/radar-vision-fusion/

  69. Large animal detection and collision avoidance product: http://www.telematics.com/telematics-blog/horse-avoidance-tech-latest-volvo-push/

  70. T.A. Williamson: A High-Performance Stereo Vision System for Obstacle Detection, Tech. Rep., Vol. CMU-RI-TR-98-24 (Carnegie Mellon Univ., Pittsburgh 1998)

    Google Scholar 

  71. E. Li: Millimeter-Wave Polarimetric Radar System as an Advanced Vehicle Control and Warning Sensor, Ph.D. Thesis (Univ. Michigan, Michigan 1998)

    Google Scholar 

  72. J.A. Hancock: Laser Intensity Based Obstacle Detection and Tracking, Ph.D. Thesis (Carnegie Mellon Univ., Pittsburgh 1999)

    Google Scholar 

  73. European Union, 7th Framework Program: Interactive, http://www.interactive-ip.eu

  74. N.M. Oliver, B. Rosario, A.P. Pentland: A Bayesian computer vision system for modeling human interactions, IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 831–843 (2000)

    Article  Google Scholar 

  75. D. Vasquez, C. Laugier: Modeling and learning behaviors. In: Handbook of Intelligent Vehicles, ed. by A. Eskandarian (Springer, Berlin, Heidelberg 2012)

    Google Scholar 

  76. J.C. McCall, M.M. Trivedi: Lane change intent analysis using robust operators and sparse Bayesian learning, IEEE Trans. Intell. Transp. Syst. 8(3), 431–440 (2007)

    Article  Google Scholar 

  77. D. Meyer-Delius, C. Plagemann, W. Burgard: Probabilistic situation recognition for vehicular traffic scenarios, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2009) pp. 4161–4166

    Google Scholar 

  78. H. Berndt, J. Emmert, K. Dietmayer: Continuous driver intention recognition with hidden Markov models, Proc. IEEE Intell. Transp. Syst. Conf. (2008) pp. 1189–1194

    Google Scholar 

  79. G.S. Aoude, V.R. Desaraju, L.H. Stephens, J.P. How: Behavior classification algorithms at intersections and validation using naturalistic data, IEEE Intell. Veh. Symp. (2011) pp. 601–606

    Google Scholar 

  80. G.S. Aoude, B.D. Luders, D.S. Levine, J.P. How: Threat-aware path planning in uncertain urban environments, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2010) pp. 6058–6063

    Google Scholar 

  81. C. Tay, K. Mekhnacha, C. Laugier: Probabilistic vehicle motion modeling and risk estimation. In: Handbook of Intelligent Vehicles, ed. by A. Eskandarian (Springer, Berlin, Heidelberg 2012)

    Google Scholar 

  82. M. Althoff, O. Stursberg, M. Buss: Model-based probabilistic collision detection in autonomous driving, IEEE Trans. Intell. Transp. Syst. 10(2), 299–310 (2009)

    Article  Google Scholar 

  83. S. Lefèvre, C. Laugier, J. Ibañez-Guzmán: Evaluating risk at road intersections by detecting conflicting intentions, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2012)

    Google Scholar 

  84. A. Molinero, H. Evdorides, C. Naing, A. Kirk, J. Tecl, J.M. Barrios, M.C. Simon, V. Phan, T. Hermitte: Accident causation and pre-accidental driving situations – In-depth accident causation analysis, Deliverable D2.2 (IST, Brussel 2008)

    Google Scholar 

  85. Intelligent intersections and cooperation – Intersafe 2: http://www.cvisproject.org/

  86. W.D. Jones: Keeping cars from crashing, IEEE Spectrum 38(9), 40–45 (2001)

    Article  Google Scholar 

  87. P. Venhovens, K. Naab, B. Adiprasito: Stop and go cruise control, Proc. FISTA World Automot. Congr. (2000)

    Google Scholar 

  88. I.E. Paromtchik, C. Laugier: Motion generation and control for parking an autonomous vehicle, Proc. Int. Conf. Robotics Autom. (ICRA), Vol. 4 (1996) pp. 3117–3122

    Google Scholar 

  89. Toyota: Toyota parking assistance system, http://www.toyota-global.com/innovation/safety_technology/safety_technology/parking/

  90. V.R. Vuchic: O-Bahn: Description and evaluation of a new concept, 64th Annual Meet. Transport. Res. Board (Transportation Research Board, Washington DC 1985)

    Google Scholar 

  91. S. Ishida, J.E. Gayko: Development, evaluation and introduction of a lane keeping assistance system, IEEE Intell. Veh. Symp. (2004) pp. 943–944

    Google Scholar 

  92. C. Hatipoglu, Ü. Özgüner, K.A. Redmill: Automated lane change controller design, IEEE Trans. Intell. Transp. Syst. 4(1), 13–22 (2003)

    Article  Google Scholar 

  93. A. Bartels, M.-M. Meinecke, S. Steinmeyer: Lane change assistance. In: Handbook of Intelligent Vehicles, ed. by A. Eskandarian (Springer, Berlin, Heidelberg 2012) pp. 729–757

    Chapter  Google Scholar 

  94. J. Treat, N. Tumbas, S. McDonald, D. Shinar, R. Hume, R. Mayer, R. Stansifer, N. Castellan: Tri-Level study of the causes of traffic accidents: Final report – Executive summary, Tech. Rep., Vol. DOT-HS-034-3-535-79-TAC(S) (Institute for Research in Public Safety, Bloomington 1979)

    Google Scholar 

  95. K.A. Brookhuis, D. De Waard, W.H. Janssen: Behavioural impacts of advanced driver assistance systems – an overview, Eur. J. Transp. Infrastruct. Res. 1(3), 245–253 (2001)

    Google Scholar 

  96. Q. Ji, Z. Zhu, P. Lan: Real-time nonintrusive monitoring and prediction of driver fatigue, IEEE Trans. Veh. Technol. 53(4), 1052–1068 (2004)

    Article  Google Scholar 

  97. M. Carmen del Rio, J. Gomez, M. Sancho, F.J. Alvarez: Alcohol, illicit drugs and medicinal drugs in fatally injured drivers in Spain between 1991 and 2000, Forensic Sci. Int. 127(1/2), 63–70 (2002)

    Article  Google Scholar 

  98. N.L. Haworth, T.J. Triggs, E.M. Grey: Driver Fatigue: Concepts, Measurement and Crash Countermeasures (Human Factors Group, Department of Psychology, Monash University 1988)

    Google Scholar 

  99. N.L. Howarth, C.J. Heffernan, E.J. Horne: Fatigue in truck accidents, Tech. Rep., Vol. 3 (Monash University, Accident Research Centre 1989)

    Google Scholar 

  100. W.W. Wierwille, L.A. Ellsworth: Evaluation of driver drowsiness by trained raters, Accid. Analysis Prev. 26(5), 571–581 (1994)

    Article  Google Scholar 

  101. J. Stutts, D. Reinfurt, L. Staplin, E. Rodgman: The role of driver distraction in traffic crashes. Tech. Rep (AAA Foundation for Traffic Safety, Washington 2001)

    Google Scholar 

  102. T. Victor: Keeping Eye and Mind on the Road, Ph.D. Thesis (Uppsala Univ., Uppsala 2005)

    Google Scholar 

  103. L. Fletcher, A. Zelinsky: Driver inattention detection based on eye gaze – road event correlation, Int. J. Robotics Res. 28(6), 774–801 (2009)

    Article  Google Scholar 

  104. L. Fletcher, L. Petersson, A. Zelinsky: Road scene monotony detection in a fatigue management driver assistance system, Proc. IEEE Intell. Veh. Symp. (2005) pp. 484–489

    Google Scholar 

  105. Y. Owechko, N. Srinivasa, S. Medasani, R. Boscolo: Vision-based fusion system for smart airbag applications, IEEE Intell. Veh. Symp., Vol. 1 (2002) pp. 245–250

    Google Scholar 

  106. F.J. Martinez, T. Chai-Keong, J.-C. Cano, C.T. Calafate, P. Manzoni: Emergency services in future intelligent transportation systems based on vehicular communication networks, IEEE Intell. Transp. Syst. Mag. 2(2), 6–20 (2010)

    Article  Google Scholar 

  107. Emergency response and assistance to accidents product: https://www.splitsecnd.com/

  108. M. Schulze, J. Irion, T. Mäkinen, M. Flament: Accidentology as a basis for requirements and system architecture of preventive safety applications, 10th Int. Forum Adv. Microsyst. Automot. Appl. (AAA) (2006) pp. 407–426

    Google Scholar 

  109. X.Y. Lu, H.S. Tan, S.E. Shladover, J.K. Heidrick: Implementation and comparison of nonlinear longitudinal controllers for car platooning, 5th Int. Symp. Adv. Veh. Control (AVEC) (2000)

    Google Scholar 

  110. Cybercar: Cybercar – Automated Bus Rapid Transit vehicle

    Google Scholar 

  111. European Commission: Intelligent Car Initiative, http://www.ertico.com/the-intelligent-car-initiative

  112. World Carshare Consortium: http://www.ecoplan.org/carshare/cs_index.htm

  113. R. Cervero: Creating a Linear City with a Surface Metro: The Story of Curitiba, Institute of Urban and Regional Development, IURD Working Paper 643 (Univ. California, Berkeley 1995)

    Google Scholar 

  114. H.S. Jacob Taso, J.L. Botha: Definition and Evaluation of Bus and Truck Automation Operations Concepts, Path Rep. UCB-ITS-PRR-2002-08 (Univ. California, Oakland 2002)

    Google Scholar 

  115. Phileas advanced public transport: http://www.apts-phileas.com

  116. J. Ziegler, P. Bender, M. Schreiber, H. Lategahn, C. Stiller: Making Bertha drive: An autonomous journey on a historic route, IEEE Intell. Transp. Syst. Mag. 6(2), 8–20 (2014)

    Article  Google Scholar 

  117. A. Broggi, P. Cerri, S. Debattisti, M.C. Laghi, P. Medici, M. Panciroli, A. Prioletti: PROUD – Public ROad Urban Driverless test: Architecture and results, Proc. IEEE Intell. Veh. Symp. (2014) pp. 648–654

    Google Scholar 

  118. US Department of Transportation, Research and Innovation Technology Administration, Intelligent Transportation Systems, Joint Program Office (DOT, Washington 2014): http://www.its.dot.gov/

  119. European Union Research on Transportation (European Commission, Brussels 2014) http://ec.europa.eu/research/transport/

  120. Japan Ministry of Land, Infrastructure and Transport: Road Bureau ITS Program, http://www.its.go.jp/ITS/(2007)

  121. EU Transport Research and Innovation Portal: http://www.transport-research.info/web/index.cfm

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Broggi .

Editor information

Editors and Affiliations

Video-References

Video-References

:

PROUD2013 – Inside VisLab’s driverless car available from http://handbookofrobotics.org/view-chapter/62/videodetails/178

:

VIAC: The VisLab Intercontinental Autonomous Challenge available from http://handbookofrobotics.org/view-chapter/62/videodetails/179

:

Motion prediction using the Bayesian occupancy filter approach (Inria) available from http://handbookofrobotics.org/view-chapter/62/videodetails/420

:

Cybercars and the city of tomorrow available from http://handbookofrobotics.org/view-chapter/62/videodetails/429

:

Bayesian embedded perception in Inria/Toyota instrumented platform available from http://handbookofrobotics.org/view-chapter/62/videodetails/566

:

Inria/Ligier automated parallel parking demo in an open parking area available from http://handbookofrobotics.org/view-chapter/62/videodetails/567

:

Collision avoidance at blind intersections using V2V and intention / expectation approach (Inria & Renault) available from http://handbookofrobotics.org/view-chapter/62/videodetails/822

:

Lane tracking available from http://handbookofrobotics.org/view-chapter/62/videodetails/836

:

Speed sign detection available from http://handbookofrobotics.org/view-chapter/62/videodetails/838

:

Pedestrian detection available from http://handbookofrobotics.org/view-chapter/62/videodetails/839

:

Driver fatigue and inattention available from http://handbookofrobotics.org/view-chapter/62/videodetails/839

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Broggi, A., Zelinsky, A., Özgüner, Ü., Laugier, C. (2016). Intelligent Vehicles. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32552-1_62

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32550-7

  • Online ISBN: 978-3-319-32552-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics