Skip to main content

Robotics in Mining

  • Chapter

Part of the Springer Handbooks book series (SHB)

Abstract

This chapter presents an overview of the state of the art in mining robotics, from surface to underground applications, and beyond. Mining is the practice of extracting resources for utilitarian purposes. Today, the international business of mining is a heavily mechanized industry that exploits the use of large diesel and electric equipment. These machines must operate in harsh, dynamic, and uncertain environments such as, for example, in the high arctic, in extreme desert climates, and in deep underground tunnel networks where it can be very hot and humid. Applications of robotics in mining are broad and include robotic dozing, excavation, and haulage, robotic mapping and surveying, as well as robotic drilling and explosives handling. This chapter describes how many of these applications involve unique technical challenges for field roboticists. However, there are compelling reasons to advance the discipline of mining robotics, which include not only a desire on the part of miners to improve productivity, safety, and lower costs, but also out of a need to meet product demands by accessing orebodies situated in increasingly challenging conditions.

Keywords

  • Situational Awareness
  • Underground Mining
  • Inertial Navigation System
  • Blast Hole
  • Longwall Mining

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-32552-1_59
  • Chapter length: 28 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   309.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-32552-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   399.99
Price excludes VAT (USA)
Fig. 59.1
Fig. 59.2
Fig. 59.3
Fig. 59.4
Fig. 59.5
Fig. 59.6a,b
Fig. 59.7
Fig. 59.8
Fig. 59.9a,b
Fig. 59.10
Fig. 59.11
Fig. 59.12
Fig. 59.13
Fig. 59.14
Fig. 59.15
Fig. 59.16
Fig. 59.17
Fig. 59.18
Fig. 59.19

Abbreviations

2-D:

two-dimensional

3-D-NDT:

three-dimensional normal distributions transform

3-D:

three-dimensional

4WD:

four wheel drive

ACARP:

Australian Coal Association Research Program

AFC:

armoured (or articulated) face conveyor

CAT:

collision avoidance technology

CMTE:

Cooperative Research Centre for Mining Technology and Equipment

CMU:

Carnegie Mellon University

CSIRO:

Commonwealth Scientific and Industrial Research Organisation

DGPS:

differential global positioning system

DOF:

degree of freedom

EHC:

enhanced horizon control

GLS:

global navigation satellite system

GPS:

global positioning system

ICP:

iterative closest point

IMU:

inertial measurement unit

INS:

inertial navigation system

IREDES:

International Rock Excavation Data Exchange Standard

ISO:

International Organization for Standardization

JPS:

jigsaw positioning system

LASC:

Longwall Automation Steering Committee

LHD:

load haul-dump

LIDAR:

light detection and ranging

MEMS:

microelectromechanical system

NASA:

National Aeronautics and Space Agency

NIOSH:

United States National Institute for Occupational Safety and Health

PAT:

proximity awareness technology

PDT:

proximity detection technology

PTU:

pan–tilt unit

PUMA:

programmable universal machine for assembly

RCS:

rig control system

RECS:

robotic explosive charging system

RFID:

radio frequency identification

ROC:

remote operations centre

ROM:

run-of-mine

ROV:

remotely operated underwater vehicle

RTK:

real-time kinematics

SLAM:

simultaneous localization and mapping

SPMS:

shearer position measurement system

TTC:

time-to-collision

UKF:

unscented Kalman filter

V2V:

vehicle-to-vehicle

WAAS:

wide-area augmentation system

WASP:

wireless ad-hoc system for positioning

XML:

extensible markup language

References

  1. M. Scoble, L.K. Daneshmend: Mine of the year 2020: Technology and human resources, CIM Bull. 91(1023), 51–60 (1998)

    Google Scholar 

  2. P. Corke, J. Roberts, J. Cunningham, D. Hainsworth: Mining robotics. In: Springer Handbook of Robotics, ed. by B. Siciliano, O. Khatib (Springer, Berlin, Heidelberg 2008) pp. 1127–1150, Chap. 49

    CrossRef  Google Scholar 

  3. H.L. Hartman, J.M. Mutmansky: Introductory Mining Engineering, 2nd edn. (Wiley, Hoboken 2002)

    Google Scholar 

  4. G.R. Osinski, T.D. Barfoot, N. Ghafoor, M. Izawa, N. Banerjee, P. Jasiobedzki, J. Tripp, R. Richards, S. Auclair, H. Sapers, L. Thomson, R. Flemming: Lidar and the mobile Scene Modeler (mSM) as scientific tools for planetary exploration, Planet. Space Sci. 58(4), 691–700 (2010)

    CrossRef  Google Scholar 

  5. Y. Bar-Cohen, K. Zacny: Drilling in Extreme Environments: Penetration and Sampling on Earth and other Planets (Wiley-VCH, Weinheim 2009)

    CrossRef  Google Scholar 

  6. Clearpath Robotics: AMEC. Puts safety first and uses advanced robotic system for mapping potash tailings, http://clearpath.wpengine.netdna-cdn.com/wp-content/uploads/2013/02/AMEC_SuccessStory_2013e.pdf (2013)

  7. P. Lever: Automation and robotics. In: SME Mining Engineering Handbook, ed. by P. Darling (SME, Enlgewood 2011) pp. 805–824, Chap. 9.8

    Google Scholar 

  8. D. Zlotnikov: Mining in the extreme, CIM Mag. 7(5), 50–56 (2012)

    Google Scholar 

  9. P. Cross: Recent Trends in Output and Employment, Res. Pap. 13-604-MIE No. 054 (Statistics Canada, Ottawa 2007)

    Google Scholar 

  10. Australian Bureau of Statistics: 5260.0.55.002 – Experimental Estimates of Industry Multifactor Productivity, 2010-11, http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/5260.0.55.0022010-11 (2011)

  11. N. Vagenas, N. Runciman, S.R. Clément: A methodology for maintenance analysis of mining equipment, Int. J. Min. Reclam. Environ. 11, 33–40 (1997)

    CrossRef  Google Scholar 

  12. A. Gustafson, H. Schunnesson, D. Galar, U. Kumar: Production and maintenance performance analysis: Manual Production maintenance performance analytis: Manual versus semi-automatic LHDs, J. Qual. Maint. Eng. 19(1), 74–88 (2013)

    CrossRef  Google Scholar 

  13. J. McGagh: The mine of the future: Rio Tinto's innovation pathway, http://www.riotinto.com/media/18435_presentations_22363.asp (2012), Presentation given at MINExpo 2012, Las Vegas

  14. J.A. Aldinger, C.M. Keran: A Review of Accidents During Surface Mine Mobile Equipment Operations, Proc. 25th Annu. Inst. Min. Health Saf. Res. (1994) pp. 99–108

    Google Scholar 

  15. H. Durrant-Whyte, D. Pagac, B. Rogers, M. Stevens, G. Nelmes: Field and service applications-an autonomous straddle carrier for movement of shipping containers-from research to operational autonomous systems, IEEE Robotics Autom. Mag. 14(3), 14–23 (2007)

    CrossRef  Google Scholar 

  16. J. Chadwick: Autonomous mine truck, Min. Mag. 175(5), 287–288 (1996)

    Google Scholar 

  17. Pav Jordan: Chile's new Gaby copper mine steps into the future (Reuters), http://uk.reuters.com/article/2008/05/21/chile-codelco-gaby-idUKN2133325020080521 (2008)

  18. Komatsu: Autonomous haulage system – Komatsu's pioneering technology deployed at Rio Tinto mine in Australia, http://www.komatsu.com/ce/currenttopics/v09212/index.html (2008)

  19. Caterpillar: Autonomous haulage improves mine site safety, http://www.catminestarsystem.com/articles/autonomous-haulage-improves-mine-site-safety (2013)

  20. Hitachi Construction Machinery: Hitachi chooses South Burnett for three-year automated mine-truck trial, http://www.stanwell.com/Files/Hitachi_automated_truck_trial.PDF (2013)

  21. J. Barnes, C. Rizos, J. Wang, D. Small, G. Voigt, N. Gambale: Locata: A new positioning technology for high precision indoor and outdoor positioning, Proc. 2003 Int. Symp. GPS/GNSS (2003) pp. 9–18

    Google Scholar 

  22. G.S. Bastos, L.E. Souza, F.T. Ramos, C.H.C. Ribeiro: A single-dependent agent approach for stochastic time-dependent truck dispatching in open-pit mining, IEEE 14th Int. Conf. Intell. Transp. Syst. (ITSC) (2011) pp. 1057–1062

    Google Scholar 

  23. Modular Mining: DISPATCH, http://modularmining.com/product/dispatch/ (2013)

  24. Komatsu: Modular mining systems unveils the latest in mining technology, http://www.komatsu.com/ce/support/v08412/index.html (2008)

  25. Caterpillar: Track, manage and assign all types of equipment, across one site or many, https://mining.cat.com/fleet (2013)

  26. Wenco: Wenco fleet management systems, http://www.wencomine.com/products/single-gallery/9342146 (2013)

  27. Leica Geosystems: JOptimiser, http://mining.leica-geosystems.com/products/Jsoftware/Joptimizer/ (2013)

  28. Devex: SMARTMINE, http://www.smartmine.com.br/eng/smartmine (2012)

  29. S. Alarie, M. Gamache: Overview of solution strategies used in truck dispatching systems for open pit mines, Int. J. Surf. Min. Reclam. Environ. 16(1), 59–76 (2002)

    CrossRef  Google Scholar 

  30. A. Arelovich, F. Masson, O. Agamennoni, S. Worrall, E. Nebot: Heuristic rule for truck dispatching in open-pit mines with local information-based decisions, Proc. 13th IEEE Int. Conf. Intell. Transp. Syst. (ITSC) (2010) pp. 1408–1414

    Google Scholar 

  31. S.G. Ercelebi, A. Bascetin: Optimization of shovel-truck system for surface mining, J. S. Afr. Inst. Min. Metall. Optim. 109, 433–439 (2009)

    Google Scholar 

  32. R.F. Subtil, D.M. Silva, J.C. Alves: A Practical Approach to Truck Dispatch for Open Pit Mines, Proc. 2011 APCOM Symp. (2011) pp. 765–777

    Google Scholar 

  33. C.H. Ta, J.V. Kresta, J.F. Forbes, H.J. Marquez: A stochastic optimization approach to mine truck allocation, Int. J. Surf. Min. Reclam. Environ. 19(3), 162–175 (2005)

    CrossRef  Google Scholar 

  34. S.-K. Kim, J.S. Russell: Framework for an intelligent earthwork system. Part I, System architecture, Autom. Constr. 12(1), 1–13 (2003)

    CrossRef  Google Scholar 

  35. S. Singh: The state of the art in automation of earthmoving, ASCE J. Aerosp. Eng. 10(4), 179–188 (1997)

    CrossRef  Google Scholar 

  36. S. Singh: State of the art in automation of earthmoving, Proc. Workshop Adv. Geomechatronics (2002)

    Google Scholar 

  37. M. Dunbabin, P. Corke: Autonomous excavation using a rope shovel, J. Field Robotics 23, 379–394 (2006)

    CrossRef  Google Scholar 

  38. P.J.A. Lever, F.-Y. Wang: Intelligent excavator control system for lunar mining system, J. Aerosp. Eng. 8(1), 16–24 (1995)

    CrossRef  Google Scholar 

  39. X. Shi, P.J.A. Lever, F.-Y. Wang: Experimental robotic excavation with fuzzy logic and neural networks, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1996) pp. 957–962

    Google Scholar 

  40. W. Richardson-Little, C.J. Damaren: Position accommodation and compliance control for robotic excavation, Proc. IEEE Conf. Control Appl. (2005)

    Google Scholar 

  41. L.E. Bernold: Motion and Path Control for Robotic Excavation, J. Aerosp. Eng. 6(1), 1–18 (1993)

    CrossRef  Google Scholar 

  42. Q. Ha, M. Santos, Q. Nguyen, D. Rye, H. Durrant-Whyte: Robotic excavation in construction automation, IEEE Robotics Autom. Mag. 9(1), 20–28 (2007)

    Google Scholar 

  43. S. Tafazoli, S.E. Salcudean, K. Hashtudi-Zaad, P.D. Lawrence: Impedance control of a teleoperated excavator, IEEE Trans. Control Syst. Technol. 10(3), 355–367 (2002)

    CrossRef  Google Scholar 

  44. C.P. Tan, Y.H. Zweiri, K. Althoefer, L.D. Seneviratne: Online soil parameter estimation scheme based on Newton--Raphson method for autonomous excavation, IEEE/ASME Trans. Mechatron. 10(2), 221–229 (2000)

    CrossRef  Google Scholar 

  45. S. Singh: Learning to predict resistive forces during robotic excavation, Proc. 1995 IEEE Int. Conf. Robotics Autom. (1995) pp. 2102–2107

    CrossRef  Google Scholar 

  46. J.A. Marshall: Towards Autonomous Excavation of Fragmented Rock: Modelling, Identification and Control, Ph.D. Thesis (Queen's Univ., Kingston 2001)

    Google Scholar 

  47. A.R. Reece: The fundamental equation of earthmoving mechanics, Proc. Inst. Mech. Eng. (1964)

    Google Scholar 

  48. H. Cannon, S. Sanjiv: Models for automated earth moving, Lect. Note. Control Inform. Sci. 250, 163–172 (2000)

    CrossRef  Google Scholar 

  49. E. Duff: Accurate guidance and measurement for excavators using laser scanners, Techn. Rep. C14043 (ACARP, Brishane 2006)

    Google Scholar 

  50. Leica Geosystems Mining: Jigsaw products: dozer autorip, http://mining.leica-geosystems.com/products/J3autonomous/J3dozer-autorip/ (2013)

  51. Mining Magazine: Thinking automatically, http://www.miningmagazine.com/equipment/thinking-automatically (2012)

  52. Ry Crozier: Gears up for expansion across Pilbara mines, http://www.itnews.com.au/News/312004,rio-tinto-advances-autonomous-drill-project.aspx (2012)

  53. E. Duff, C. Caris, A. Bonchis, K. Taylor, C. Gunn, M. Adcock: The development of a telerobotic rock breaker, Springer Tract. Adv. Robot. 62, 411–420 (2010)

    Google Scholar 

  54. E. Duff, K. Usher, P. Ridley: Swing Loader Traffic Control, Techn. Rep. C13041 (ACARP, Brishane 2006)

    Google Scholar 

  55. B. Owens: Concept Design and Testing of a GPS-less System for Autonomous Shovel-Truck Spotting, Ph.D. Thesis (Queen's Univ., Kingston 2013)

    Google Scholar 

  56. A. Stentz, J. Bares, S. Singh, P. Rowe: A robotic excavator for autonomous truck loading, Auton. Robots 7(2), 175–186 (1999)

    CrossRef  Google Scholar 

  57. M. Dunbabin, G. Winstanley, P. Corke: Refinement of Automated Dragline Swing Control Algorithms, Techn. Rep. C13040 (ACARP, Brishane 2005)

    Google Scholar 

  58. J. Roberts: Dragline operational enhancements through the use of digital terrain maps, ACARP Report C13034 (2006)

    Google Scholar 

  59. Leica Geosystems Mining: Well positioned, http://mining.leica-geosystems.com/products/Jassist/Jps/ (2013)

  60. Locata Corporation: Technology brief, http://www.locatacorp.com/wp-content/uploads/2011/09/Locata-Technology-Brief-13-June-2012-Public.pdf (2013)

  61. T. Sathyan, D. Humphrey, M. Hedley: WASP: A system and algorithms for accurate radio localization using low-cost hardware, IEEE Trans. Syst. Man Cybern. C 41(2), 211–222 (2011)

    CrossRef  Google Scholar 

  62. United States Department of Labor: Mine safety and health administration report, http://www.cdc.gov/niosh/mining/pubs/pdfs/mriit.pdf (2010)

  63. B. Clark, S. Worrall, G. Brooker, J. Martinez, E. Nebot: Improving situational awareness with radar information, Proc. 2012 IEEE Intell. Vehicle Symp. (2012) pp. 535–540

    CrossRef  Google Scholar 

  64. K. Nienhaus, R. Winkel, W. Mayer, A. Gronau, W. Menzel: An experimental study on using electronically scanning microwave radar systems on surface mining machines, Proc. IEEE Radar Conf. (2007) pp. 509–512

    Google Scholar 

  65. G. Agamennoni, J.I. Nieto, E.M. Nebot: Estimation of Multivehicle Dynamics by Considering Contextual Information, IEEE Trans. Robotics 28(4), 855–870 (2012)

    CrossRef  Google Scholar 

  66. S. Worrall, G. Agamennoni, J.I. Nieto, E.M. Nebot: A context-based approach to vehicle behavior prediction, IEEE Intell. Transp. Syst. Mag. 4(3), 32–44 (2012)

    CrossRef  Google Scholar 

  67. P.V. Golde: Implementation of drill teleoperation in mine automation, Ph.D. Thesis (McGill Univ., Montréal 1997)

    Google Scholar 

  68. J. Appelgren: Remote control and navigation systems, Min. Constr. Mag. 2, 16–19 (2003)

    Google Scholar 

  69. D. Hunter, D. Wells, K. Chrystall, P. Feighan: Achieving effective telerobotic control of industrial equipment, CIM Bull. 89(1002), 83–88 (1996)

    Google Scholar 

  70. J. Larsson, M. Broxvall, A. Saffiotti: An evaluation of local autonomy applied to teleoperated vehicles in underground mines, Proc. 2010 IEEE Int. Conf. Robotics Autom. (ICRA) (2010) pp. 1745–1752

    CrossRef  Google Scholar 

  71. K. Amdahl, M. Lundström: Automatic truck saves money underground, World Mining 160, 40–44 (1972)

    Google Scholar 

  72. G.D. Brophey: Vehicle guidance system, CA 2041373A1 (1991)

    Google Scholar 

  73. R. Hurteau, M. St-Amant, Y. Laperriere, G. Chevrette: Optical guidance system for underground mine vehicles, Proc. 1992 IEEE Conf. Robotics Autom. (1992) pp. 639–644

    CrossRef  Google Scholar 

  74. J.F. Purchase, R.A. Poole: Guidance system for automated vehicles, and guidance strip for use therewith, US 6163745A (2000)

    Google Scholar 

  75. U. Wiklund, U. Andersson, K. Hyypä: AGV navigation by angle measurements, Proc. 6th Int. Conf. Autom. Guided Veh. Syst. (1988) pp. 199–212

    Google Scholar 

  76. S. Scheding, G. Dissanayake, E.M. Nebot, H.F. Durrant-Whyte: An experiment in autonomous navigation of an underground mining vehicle, IEEE Trans. Robotics Autom. 15(1), 85–95 (1999)

    CrossRef  Google Scholar 

  77. L.A. Bloomquist, E.H. Hinton: Autonomous vehicle guidance system, US 5999865A (1999)

    Google Scholar 

  78. P. Debanné, J.-Y. Hervé, P. Cohen: Global self-localization of a robot in underground mines, Proc. 1997 IEEE Int. Conf. Syst. Man Cybern. (1997) pp. 4400–4405

    Google Scholar 

  79. J.M. Roberts, E.S. Duff, P.I. Corke: Reactive navigation and opportunistic localization for autonomous underground mining vehicles, Inform. Sci. 145, 127–146 (2002)

    MATH  CrossRef  Google Scholar 

  80. J.M. Roberts, E.S. Duff, P.I. Corke, P. Sikka, G.J. Winstanley, J.B. Cunningham: Autonomous control of underground mining vehicles using reactive navigation, Proc. 2000 IEEE Conf. Robotics Autom. (2000) pp. 3790–3795

    Google Scholar 

  81. J. Steele, C. Ganesh, A. Kleve: Control and scale model simulation of sensor-guided LHD mining machines, IEEE Trans. Ind. Appl. 29(6), 1232–1238 (1993)

    CrossRef  Google Scholar 

  82. J. Larsson, M. Broxvall, A. Saffiotti: A navigation system for automated loaders in underground mines, Proc. 5th Int. Conf. Field Serv. Robotics (2005)

    Google Scholar 

  83. R. Madhavan, M.W.M.G. Dissanayake, H.F. Durrant-Whyte: Autonomous underground navigation of an LHD using a combined ICP-EKF approach, Proc. IEEE Conf. Robotics Autom. (1998) pp. 3703–3708

    Google Scholar 

  84. H. Mäkelä: Overview of LHD navigation without artificial beacons, Robotics Auton. Syst. 36, 21–35 (2001)

    MATH  CrossRef  Google Scholar 

  85. J. Larsson, J. Appelgren, J.A. Marshall, T.D. Barfoot: Atlas Copco infrastructureless guidance system for high-speed autonomous underground tramming, Proc. 5th Int. Conf. Exhib. Mass Min. (2008) pp. 585–594

    Google Scholar 

  86. J.A. Marshall, T.D. Barfoot, J. Larsson: Autonomous underground tramming for center-articulated vehicles, J. Field Robotics 25(6–7), 400–421 (2008)

    CrossRef  Google Scholar 

  87. C. Altafini: A path-tracking criterion for an LHD articulated vehicle, Int. J. Robotics Res. 18(5), 435–441 (1999)

    CrossRef  Google Scholar 

  88. A. Hemami, V. Polotski: Problem formulation for path tracking automation of low speed articulated vehicles, Proc. IEEE Int. Conf. Control Appl. (1996) pp. 697–702

    Google Scholar 

  89. V. Polotski: New reference point for guiding an articulated vehicle, Proc. IEEE Int. Conf. Control Appl. (2000) pp. 455–460

    Google Scholar 

  90. P. Ridley, P. Corke: Autonomous control of an underground mining vehicle, Proc. 2001 Austr. Conf. Robotics Autom. (2001) pp. 26–31

    Google Scholar 

  91. R.M. DeSantis: Modeling and path-tracking for a load-haul-dump mining vehicle, J. Dyn. Syst. Meas. Control 119, 40–47 (1997)

    MATH  CrossRef  Google Scholar 

  92. S. Scheding, G. Dissanayake, E. Nebot, H. Durrant-Whyte: Slip modelling and aided inertial navigation of an LHD, Proc. IEEE Int. Conf. Robotics Autom. (1997) pp. 1904–1909

    CrossRef  Google Scholar 

  93. G.B. Smith, R.J. Butcher, A. Uzbekova, E. Mort, A. Clement: Case study comparison of teleremote and autonomous assist underground loader technology at the Kanowna Belle Mine, Proc. 11th AusIMM Underground Operators' Conference (2001) pp. 305–312

    Google Scholar 

  94. B. Cook, D. Burger, L. Alberts, R. Grobler: Automated loading and hauling experiences at De Beers Finsch Mine, Proc. 10th AusIMM Underground Operators' Conference (2010) pp. 231–238

    Google Scholar 

  95. J.A. Marshall, P.F. Murphy, L.K. Daneshmend: Toward Autonomous Excavation of Fragmented Rock: Full-Scale Experiments, IEEE Trans. Autom. Sci. Eng. 5(3), 562–566 (2008)

    CrossRef  Google Scholar 

  96. S. Singh: Synthesis of Tactical Plans for Robotic Excavation, Ph.D. Thesis (Robotics Institute Carnegie Mellon Univ., Pittsburgh 1995)

    Google Scholar 

  97. Q. Ji, R.L. Sanford: Autonomous excavation of fragmented rock using machine vision. In: Emerging Computer Techniques for the Minerals Industry, ed. by B.J. Schneider, D.A. Stanley, C.L. Karr (SME, Littleton 1993) pp. 221–228

    Google Scholar 

  98. M.K. Petty, J. Billingsley, T. Tran-Cong: Autonomous LHD Loading, Proc. Annu. IEEE Conf. Mechatron. Mach. Vis. Pract. (1997) pp. 219–224

    Google Scholar 

  99. H. Takahashi, M. Hasegawa, E. Nakano: Analysis on the resistive forces acting on the bucket of a Load-Haul-Dump machine and a wheel loader in the scooping task, Adv. Robotics 13(2), 97–114 (1999)

    CrossRef  Google Scholar 

  100. M. Magnusson, H. Almqvist: Consistent pile-shape quantification for autonomous wheel loaders, Proc. 2011 IEEE/RSJ Int. Conf. Intell. Robots Syst. (2011) pp. 4078–4083

    CrossRef  Google Scholar 

  101. A. Hemami: Fundamental analysis of automatic excavation, J. Aerosp. Eng. 8(4), 175–179 (1995)

    MathSciNet  CrossRef  Google Scholar 

  102. G.W. Mitchell: Longwall mining. In: Australian Coal Mining Practice, ed. by R.J. Kininmouth, E.Y. Baafi (AIMM, Carlton 2005) pp. 340–375

    Google Scholar 

  103. P.B. Reid, M.T. Dunn, D.C. Reid, J.C. Ralston: Real-world automation: New capabilities for underground longwall mining, Proc. Austr. Conf. Robotics Autom. (2010)

    Google Scholar 

  104. A. Bonchis, E. Duff, J. Roberts, M. Bosse: Robotic explosive charging in mining and construction applications, IEEE Trans. Autom. Sci. Eng. (2013)

    Google Scholar 

  105. D.J. Peterson, T. LaTourette: New Forces at Work in Mining: Industry Views of Critical Technologies (RAND Sci. Techn. Policy Inst., Santa Monica 2001)

    Google Scholar 

  106. J. Peck, J. Gray: The total mining system (TMS): The basis for open pit automation, CIM Bull. 88(993), 38–44 (1995)

    Google Scholar 

  107. G. Schaffer, A. Stentz: Automated Surveying of Mines Using a Laser Rangefinder, Emerg. Comp. Techn. Miner. Ind. Symp. (SME) (1993) pp. 363–370

    Google Scholar 

  108. A. Nuchter, H. Surmann, K. Lingemann, J. Hertzberg, S. Thrun: 6D SLAM with an application in autonomous mine mapping, Proc. 2004 IEEE Int. Conf. Robotics Autom. (2004) pp. 1998–2003

    Google Scholar 

  109. S. Thrun, D. Hahnel, D. Ferguson, D. Montemerlo, R. Triebel, W. Burgard, C. Baker, Z. Omohundro, S. Thayer, W. Whittaker: A system for volumetric robotic mapping of abandoned mines, Proc. 2003 IEEE Int. Conf. Robotics Autom. (2003) pp. 4270–4275

    Google Scholar 

  110. D. Silver, D. Ferguson, A. Morris, S. Thayer: Topological exploration of subterranean environments, J. Field Robotics 23(6/7), 395–415 (2006)

    CrossRef  Google Scholar 

  111. M. Magnusson, A. Lilienthal, T. Duckett: Scan registration for autonomous mining vehicles using 3D-NDT, J. Field Robotics 24(10), 803–827 (2007)

    CrossRef  Google Scholar 

  112. R. Zlot, M. Bosse: Efficient large-scale 3D mobile mapping and surface reconstruction of an underground mine, Proc. Int. Conf. Field Serv. Robotics (2012)

    Google Scholar 

  113. Garmin Ltd.: What is GPS?, http://www.garmin.com/aboutGPS/ (1996)

  114. F. van Diggelen: Indoor GPS theory and implementation, Proc. IEEE Position Loc. Navig. Symp. (2002) pp. 240–247

    Google Scholar 

  115. H. Niwa, K. Kodaka, Y. Sakamoto, M. Otake, S. Kawaguchi, K. Kujii, Y. Kanemori, S. Sugano: GPS-based indoor positioning system with multi-channel pseudolite, Proc. IEEE Int. Conf. Robotics Autom. (2008) pp. 905–910

    Google Scholar 

  116. U. Artan, J.A. Marshall, N.J. Lavigne: Robotic mapping of underground mine passageways, Trans. IMM A: Min. Technol. 120(1), 18–24 (2011)

    Google Scholar 

  117. E. Bartsch, M. Laine, M. Anderson: The application and implementation of optimized mine ventilation on demand (OMVOD) at the Xstrata Nickle Rim South Mine, Sudbury, Ontario, Proc. 13th U.S./N. Am. Mine Venti. Symp. (2010) pp. 1–15

    Google Scholar 

  118. J.C. Ralston, C.O. Hargrave, D.W. Hainsworth: Localisation of mobile underground mining equipment using wireless ethernet, Proc. Ind. Appl. Conf. (2005) pp. 225–230

    Google Scholar 

  119. M.M. Atia, A. Noureldin, J. Georgy, M. Korenberg: Bayesian filtering based WiFi/INS integrated navigation solution for GPS-denied environments, Navigation 58(2), 111–125 (2011)

    CrossRef  Google Scholar 

  120. R. Wenger: La balise de positionnement U-GPS (Underground-GPS), ISSKA Rapport Annuel (Swiss Institute for Speleology and Karst Studies, La Chaux-de-Fonds 2004), pp. 13–14

    Google Scholar 

  121. J. Chadwick: GPS for underground operations: Great potential for controlling block caves, saving trapped miners and machine automation, http://www.mining.com (2008)

  122. J.A. Marshall: Navigating the advances in underground navigation, CIM Mag. 5(4), 20–21 (2010)

    Google Scholar 

  123. N.J. Lavigne, J.A. Marshall: A landmark-bounded method for large-scale underground mine mapping, J. Field Robotics 29(6), 861–879 (2012)

    CrossRef  Google Scholar 

  124. D. Lynas, T. Horberry: Human factor issues with automated mining equipment, Ergonomics Open J. 4, 74–80 (2011)

    CrossRef  Google Scholar 

  125. IREDES: IREDES – International rock excavation data exchange standard, http://www.iredes.org/ (2013)

  126. International Standards Organisation: ISO/NP 17757 earth-moving machinery – Autonomous machine safety, http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=60473 (2012)

  127. D. Hambling: Next-Gen coal mining rescue robot, popular mechanics, http://www.popularmechanics.com/science/energy/coal-oil-gas/next-gen-coal-mining-rescue-robot (2010)

  128. R.R. Murphy, J. Kravitz, S. Stover, R. Shoureshi: Mobile robots in mine rescue and recovery, IEEE Robotics Autom. Mag. 16(2), 91–103 (2009)

    CrossRef  Google Scholar 

  129. D.W. Hainsworth: Teleoperation user interfaces for mining robotics, Auton. Robots 11(1), 19–28 (2001)

    MATH  CrossRef  Google Scholar 

  130. A. MacDonald, E. Welsch: Robotics advance ocean floor mining ventures, http://search.proquest.com/docview/1018567281 (2012)

  131. Nautilus Minerals: Fact sheet, http://www.nautilusminerals.com/i/pdf/Factsheet-Q1-2013.pdf (2013)

  132. M. Dunbabin, P. Corke, G. Winstanley, J. Roberts: Off-world robotic excavation for large-scale habitat construction and resource extraction, to boldly go where no human-robot team has gone before, AAAI Spring Symp. (2006)

    Google Scholar 

  133. J.E. Moores, R. Francis, M. Mader, G.R. Osinski, T. Barfoot, N. Barry, G. Basic, M. Battler, M. Beauchamp, S. Blain, M. Bondy, R.-D. Capitan, A. Chanou, J. Clayton, E. Cloutis, M. Daly, C. Dickinson, H. Dong, R. Flemming, P. Furgale, J. Gammel, N. Gharfoor, M. Hussein, R. Grieve, H. Henrys, P. Jaziobedski, A. Lambert, K. Leung, C. Marion, E. McCullough, C. McManus, C.D. Neish, H.K. Ng, A. Ozaruk, A. Pickersgill, L.J. Preston, D. Redman, H. Sapers, B. Shankar, A. Singleton, K. Souders, B. Stenning, P. Stooke, P. Sylvester, L. Tornabene: A mission control architecture for robotic lunar sample return as field tested in an analogue deployment to the sudbury impact structure, Adv. Space Res. 50(12), 1666–1686 (2012)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua A. Marshall .

Editor information

Editors and Affiliations

Video-References

Video-References

:

Autonomous tramming available from http://handbookofrobotics.org/view-chapter/59/videodetails/142

:

Autonomous haulage system available from http://handbookofrobotics.org/view-chapter/59/videodetails/145

:

Autonomous loading of fragmented rock available from http://handbookofrobotics.org/view-chapter/59/videodetails/718

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marshall, J.A., Bonchis, A., Nebot, E., Scheding, S. (2016). Robotics in Mining. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32552-1_59

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32550-7

  • Online ISBN: 978-3-319-32552-1

  • eBook Packages: EngineeringEngineering (R0)