M. Scoble, L.K. Daneshmend: Mine of the year 2020: Technology and human resources, CIM Bull. 91(1023), 51–60 (1998)
Google Scholar
P. Corke, J. Roberts, J. Cunningham, D. Hainsworth: Mining robotics. In: Springer Handbook of Robotics, ed. by B. Siciliano, O. Khatib (Springer, Berlin, Heidelberg 2008) pp. 1127–1150, Chap. 49
CrossRef
Google Scholar
H.L. Hartman, J.M. Mutmansky: Introductory Mining Engineering, 2nd edn. (Wiley, Hoboken 2002)
Google Scholar
G.R. Osinski, T.D. Barfoot, N. Ghafoor, M. Izawa, N. Banerjee, P. Jasiobedzki, J. Tripp, R. Richards, S. Auclair, H. Sapers, L. Thomson, R. Flemming: Lidar and the mobile Scene Modeler (mSM) as scientific tools for planetary exploration, Planet. Space Sci. 58(4), 691–700 (2010)
CrossRef
Google Scholar
Y. Bar-Cohen, K. Zacny: Drilling in Extreme Environments: Penetration and Sampling on Earth and other Planets (Wiley-VCH, Weinheim 2009)
CrossRef
Google Scholar
Clearpath Robotics: AMEC. Puts safety first and uses advanced robotic system for mapping potash tailings, http://clearpath.wpengine.netdna-cdn.com/wp-content/uploads/2013/02/AMEC_SuccessStory_2013e.pdf (2013)
P. Lever: Automation and robotics. In: SME Mining Engineering Handbook, ed. by P. Darling (SME, Enlgewood 2011) pp. 805–824, Chap. 9.8
Google Scholar
D. Zlotnikov: Mining in the extreme, CIM Mag. 7(5), 50–56 (2012)
Google Scholar
P. Cross: Recent Trends in Output and Employment, Res. Pap. 13-604-MIE No. 054 (Statistics Canada, Ottawa 2007)
Google Scholar
Australian Bureau of Statistics: 5260.0.55.002 – Experimental Estimates of Industry Multifactor Productivity, 2010-11, http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/5260.0.55.0022010-11 (2011)
N. Vagenas, N. Runciman, S.R. Clément: A methodology for maintenance analysis of mining equipment, Int. J. Min. Reclam. Environ. 11, 33–40 (1997)
CrossRef
Google Scholar
A. Gustafson, H. Schunnesson, D. Galar, U. Kumar: Production and maintenance performance analysis: Manual Production maintenance performance analytis: Manual versus semi-automatic LHDs, J. Qual. Maint. Eng. 19(1), 74–88 (2013)
CrossRef
Google Scholar
J. McGagh: The mine of the future: Rio Tinto's innovation pathway,
http://www.riotinto.com/media/18435_presentations_22363.asp (2012), Presentation given at MINExpo 2012, Las Vegas
J.A. Aldinger, C.M. Keran: A Review of Accidents During Surface Mine Mobile Equipment Operations, Proc. 25th Annu. Inst. Min. Health Saf. Res. (1994) pp. 99–108
Google Scholar
H. Durrant-Whyte, D. Pagac, B. Rogers, M. Stevens, G. Nelmes: Field and service applications-an autonomous straddle carrier for movement of shipping containers-from research to operational autonomous systems, IEEE Robotics Autom. Mag. 14(3), 14–23 (2007)
CrossRef
Google Scholar
J. Chadwick: Autonomous mine truck, Min. Mag. 175(5), 287–288 (1996)
Google Scholar
Pav Jordan: Chile's new Gaby copper mine steps into the future (Reuters), http://uk.reuters.com/article/2008/05/21/chile-codelco-gaby-idUKN2133325020080521 (2008)
Komatsu: Autonomous haulage system – Komatsu's pioneering technology deployed at Rio Tinto mine in Australia, http://www.komatsu.com/ce/currenttopics/v09212/index.html (2008)
Caterpillar: Autonomous haulage improves mine site safety, http://www.catminestarsystem.com/articles/autonomous-haulage-improves-mine-site-safety (2013)
Hitachi Construction Machinery: Hitachi chooses South Burnett for three-year automated mine-truck trial, http://www.stanwell.com/Files/Hitachi_automated_truck_trial.PDF (2013)
J. Barnes, C. Rizos, J. Wang, D. Small, G. Voigt, N. Gambale: Locata: A new positioning technology for high precision indoor and outdoor positioning, Proc. 2003 Int. Symp. GPS/GNSS (2003) pp. 9–18
Google Scholar
G.S. Bastos, L.E. Souza, F.T. Ramos, C.H.C. Ribeiro: A single-dependent agent approach for stochastic time-dependent truck dispatching in open-pit mining, IEEE 14th Int. Conf. Intell. Transp. Syst. (ITSC) (2011) pp. 1057–1062
Google Scholar
Modular Mining: DISPATCH, http://modularmining.com/product/dispatch/ (2013)
Komatsu: Modular mining systems unveils the latest in mining technology, http://www.komatsu.com/ce/support/v08412/index.html (2008)
Caterpillar: Track, manage and assign all types of equipment, across one site or many, https://mining.cat.com/fleet (2013)
Wenco: Wenco fleet management systems, http://www.wencomine.com/products/single-gallery/9342146 (2013)
Leica Geosystems: JOptimiser, http://mining.leica-geosystems.com/products/Jsoftware/Joptimizer/ (2013)
Devex: SMARTMINE, http://www.smartmine.com.br/eng/smartmine (2012)
S. Alarie, M. Gamache: Overview of solution strategies used in truck dispatching systems for open pit mines, Int. J. Surf. Min. Reclam. Environ. 16(1), 59–76 (2002)
CrossRef
Google Scholar
A. Arelovich, F. Masson, O. Agamennoni, S. Worrall, E. Nebot: Heuristic rule for truck dispatching in open-pit mines with local information-based decisions, Proc. 13th IEEE Int. Conf. Intell. Transp. Syst. (ITSC) (2010) pp. 1408–1414
Google Scholar
S.G. Ercelebi, A. Bascetin: Optimization of shovel-truck system for surface mining, J. S. Afr. Inst. Min. Metall. Optim. 109, 433–439 (2009)
Google Scholar
R.F. Subtil, D.M. Silva, J.C. Alves: A Practical Approach to Truck Dispatch for Open Pit Mines, Proc. 2011 APCOM Symp. (2011) pp. 765–777
Google Scholar
C.H. Ta, J.V. Kresta, J.F. Forbes, H.J. Marquez: A stochastic optimization approach to mine truck allocation, Int. J. Surf. Min. Reclam. Environ. 19(3), 162–175 (2005)
CrossRef
Google Scholar
S.-K. Kim, J.S. Russell: Framework for an intelligent earthwork system. Part I, System architecture, Autom. Constr. 12(1), 1–13 (2003)
CrossRef
Google Scholar
S. Singh: The state of the art in automation of earthmoving, ASCE J. Aerosp. Eng. 10(4), 179–188 (1997)
CrossRef
Google Scholar
S. Singh: State of the art in automation of earthmoving, Proc. Workshop Adv. Geomechatronics (2002)
Google Scholar
M. Dunbabin, P. Corke: Autonomous excavation using a rope shovel, J. Field Robotics 23, 379–394 (2006)
CrossRef
Google Scholar
P.J.A. Lever, F.-Y. Wang: Intelligent excavator control system for lunar mining system, J. Aerosp. Eng. 8(1), 16–24 (1995)
CrossRef
Google Scholar
X. Shi, P.J.A. Lever, F.-Y. Wang: Experimental robotic excavation with fuzzy logic and neural networks, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1996) pp. 957–962
Google Scholar
W. Richardson-Little, C.J. Damaren: Position accommodation and compliance control for robotic excavation, Proc. IEEE Conf. Control Appl. (2005)
Google Scholar
L.E. Bernold: Motion and Path Control for Robotic Excavation, J. Aerosp. Eng. 6(1), 1–18 (1993)
CrossRef
Google Scholar
Q. Ha, M. Santos, Q. Nguyen, D. Rye, H. Durrant-Whyte: Robotic excavation in construction automation, IEEE Robotics Autom. Mag. 9(1), 20–28 (2007)
Google Scholar
S. Tafazoli, S.E. Salcudean, K. Hashtudi-Zaad, P.D. Lawrence: Impedance control of a teleoperated excavator, IEEE Trans. Control Syst. Technol. 10(3), 355–367 (2002)
CrossRef
Google Scholar
C.P. Tan, Y.H. Zweiri, K. Althoefer, L.D. Seneviratne: Online soil parameter estimation scheme based on Newton--Raphson method for autonomous excavation, IEEE/ASME Trans. Mechatron. 10(2), 221–229 (2000)
CrossRef
Google Scholar
S. Singh: Learning to predict resistive forces during robotic excavation, Proc. 1995 IEEE Int. Conf. Robotics Autom. (1995) pp. 2102–2107
CrossRef
Google Scholar
J.A. Marshall: Towards Autonomous Excavation of Fragmented Rock: Modelling, Identification and Control, Ph.D. Thesis (Queen's Univ., Kingston 2001)
Google Scholar
A.R. Reece: The fundamental equation of earthmoving mechanics, Proc. Inst. Mech. Eng. (1964)
Google Scholar
H. Cannon, S. Sanjiv: Models for automated earth moving, Lect. Note. Control Inform. Sci. 250, 163–172 (2000)
CrossRef
Google Scholar
E. Duff: Accurate guidance and measurement for excavators using laser scanners,
Techn. Rep. C14043 (ACARP, Brishane 2006)
Google Scholar
Leica Geosystems Mining: Jigsaw products:
dozer autorip, http://mining.leica-geosystems.com/products/J3autonomous/J3dozer-autorip/ (2013)
Mining Magazine: Thinking automatically, http://www.miningmagazine.com/equipment/thinking-automatically (2012)
Ry Crozier: Gears up for expansion across Pilbara mines, http://www.itnews.com.au/News/312004,rio-tinto-advances-autonomous-drill-project.aspx (2012)
E. Duff, C. Caris, A. Bonchis, K. Taylor, C. Gunn, M. Adcock: The development of a telerobotic rock breaker, Springer Tract. Adv. Robot. 62, 411–420 (2010)
Google Scholar
E. Duff, K. Usher, P. Ridley: Swing Loader Traffic Control, Techn. Rep. C13041 (ACARP, Brishane 2006)
Google Scholar
B. Owens: Concept Design and Testing of a GPS-less System for Autonomous Shovel-Truck Spotting, Ph.D. Thesis (Queen's Univ., Kingston 2013)
Google Scholar
A. Stentz, J. Bares, S. Singh, P. Rowe: A robotic excavator for autonomous truck loading, Auton. Robots 7(2), 175–186 (1999)
CrossRef
Google Scholar
M. Dunbabin, G. Winstanley, P. Corke: Refinement of Automated Dragline Swing Control Algorithms, Techn. Rep. C13040 (ACARP, Brishane 2005)
Google Scholar
J. Roberts: Dragline operational enhancements through the use of digital terrain maps, ACARP Report C13034 (2006)
Google Scholar
Leica Geosystems Mining: Well positioned, http://mining.leica-geosystems.com/products/Jassist/Jps/ (2013)
Locata Corporation: Technology brief, http://www.locatacorp.com/wp-content/uploads/2011/09/Locata-Technology-Brief-13-June-2012-Public.pdf (2013)
T. Sathyan, D. Humphrey, M. Hedley: WASP: A system and algorithms for accurate radio localization using low-cost hardware, IEEE Trans. Syst. Man Cybern. C 41(2), 211–222 (2011)
CrossRef
Google Scholar
United States Department of Labor: Mine safety and health administration report, http://www.cdc.gov/niosh/mining/pubs/pdfs/mriit.pdf (2010)
B. Clark, S. Worrall, G. Brooker, J. Martinez, E. Nebot: Improving situational awareness with radar information, Proc. 2012 IEEE Intell. Vehicle Symp. (2012) pp. 535–540
CrossRef
Google Scholar
K. Nienhaus, R. Winkel, W. Mayer, A. Gronau, W. Menzel: An experimental study on using electronically scanning microwave radar systems on surface mining machines, Proc. IEEE Radar Conf. (2007) pp. 509–512
Google Scholar
G. Agamennoni, J.I. Nieto, E.M. Nebot: Estimation of Multivehicle Dynamics by Considering Contextual Information, IEEE Trans. Robotics 28(4), 855–870 (2012)
CrossRef
Google Scholar
S. Worrall, G. Agamennoni, J.I. Nieto, E.M. Nebot: A context-based approach to vehicle behavior prediction, IEEE Intell. Transp. Syst. Mag. 4(3), 32–44 (2012)
CrossRef
Google Scholar
P.V. Golde: Implementation of drill teleoperation in mine automation, Ph.D. Thesis (McGill Univ., Montréal 1997)
Google Scholar
J. Appelgren: Remote control and navigation systems, Min. Constr. Mag. 2, 16–19 (2003)
Google Scholar
D. Hunter, D. Wells, K. Chrystall, P. Feighan: Achieving effective telerobotic control of industrial equipment, CIM Bull. 89(1002), 83–88 (1996)
Google Scholar
J. Larsson, M. Broxvall, A. Saffiotti: An evaluation of local autonomy applied to teleoperated vehicles in underground mines, Proc. 2010 IEEE Int. Conf. Robotics Autom. (ICRA) (2010) pp. 1745–1752
CrossRef
Google Scholar
K. Amdahl, M. Lundström: Automatic truck saves money underground, World Mining 160, 40–44 (1972)
Google Scholar
G.D. Brophey: Vehicle guidance system, CA 2041373A1 (1991)
Google Scholar
R. Hurteau, M. St-Amant, Y. Laperriere, G. Chevrette: Optical guidance system for underground mine vehicles, Proc. 1992 IEEE Conf. Robotics Autom. (1992) pp. 639–644
CrossRef
Google Scholar
J.F. Purchase, R.A. Poole: Guidance system for automated vehicles, and guidance strip for use therewith, US 6163745A (2000)
Google Scholar
U. Wiklund, U. Andersson, K. Hyypä: AGV navigation by angle measurements, Proc. 6th Int. Conf. Autom. Guided Veh. Syst. (1988) pp. 199–212
Google Scholar
S. Scheding, G. Dissanayake, E.M. Nebot, H.F. Durrant-Whyte: An experiment in autonomous navigation of an underground mining vehicle, IEEE Trans. Robotics Autom. 15(1), 85–95 (1999)
CrossRef
Google Scholar
L.A. Bloomquist, E.H. Hinton: Autonomous vehicle guidance system, US 5999865A (1999)
Google Scholar
P. Debanné, J.-Y. Hervé, P. Cohen: Global self-localization of a robot in underground mines, Proc. 1997 IEEE Int. Conf. Syst. Man Cybern. (1997) pp. 4400–4405
Google Scholar
J.M. Roberts, E.S. Duff, P.I. Corke: Reactive navigation and opportunistic localization for autonomous underground mining vehicles, Inform. Sci. 145, 127–146 (2002)
MATH
CrossRef
Google Scholar
J.M. Roberts, E.S. Duff, P.I. Corke, P. Sikka, G.J. Winstanley, J.B. Cunningham: Autonomous control of underground mining vehicles using reactive navigation, Proc. 2000 IEEE Conf. Robotics Autom. (2000) pp. 3790–3795
Google Scholar
J. Steele, C. Ganesh, A. Kleve: Control and scale model simulation of sensor-guided LHD mining machines, IEEE Trans. Ind. Appl. 29(6), 1232–1238 (1993)
CrossRef
Google Scholar
J. Larsson, M. Broxvall, A. Saffiotti: A navigation system for automated loaders in underground mines, Proc. 5th Int. Conf. Field Serv. Robotics (2005)
Google Scholar
R. Madhavan, M.W.M.G. Dissanayake, H.F. Durrant-Whyte: Autonomous underground navigation of an LHD using a combined ICP-EKF approach, Proc. IEEE Conf. Robotics Autom. (1998) pp. 3703–3708
Google Scholar
H. Mäkelä: Overview of LHD navigation without artificial beacons, Robotics Auton. Syst. 36, 21–35 (2001)
MATH
CrossRef
Google Scholar
J. Larsson, J. Appelgren, J.A. Marshall, T.D. Barfoot: Atlas Copco infrastructureless guidance system for high-speed autonomous underground tramming, Proc. 5th Int. Conf. Exhib. Mass Min. (2008) pp. 585–594
Google Scholar
J.A. Marshall, T.D. Barfoot, J. Larsson: Autonomous underground tramming for center-articulated vehicles, J. Field Robotics 25(6–7), 400–421 (2008)
CrossRef
Google Scholar
C. Altafini: A path-tracking criterion for an LHD articulated vehicle, Int. J. Robotics Res. 18(5), 435–441 (1999)
CrossRef
Google Scholar
A. Hemami, V. Polotski: Problem formulation for path tracking automation of low speed articulated vehicles, Proc. IEEE Int. Conf. Control Appl. (1996) pp. 697–702
Google Scholar
V. Polotski: New reference point for guiding an articulated vehicle, Proc. IEEE Int. Conf. Control Appl. (2000) pp. 455–460
Google Scholar
P. Ridley, P. Corke: Autonomous control of an underground mining vehicle, Proc. 2001 Austr. Conf. Robotics Autom. (2001) pp. 26–31
Google Scholar
R.M. DeSantis: Modeling and path-tracking for a load-haul-dump mining vehicle, J. Dyn. Syst. Meas. Control 119, 40–47 (1997)
MATH
CrossRef
Google Scholar
S. Scheding, G. Dissanayake, E. Nebot, H. Durrant-Whyte: Slip modelling and aided inertial navigation of an LHD, Proc. IEEE Int. Conf. Robotics Autom. (1997) pp. 1904–1909
CrossRef
Google Scholar
G.B. Smith, R.J. Butcher, A. Uzbekova, E. Mort, A. Clement: Case study comparison of teleremote and autonomous assist underground loader technology at the Kanowna Belle Mine, Proc. 11th AusIMM Underground Operators' Conference (2001) pp. 305–312
Google Scholar
B. Cook, D. Burger, L. Alberts, R. Grobler: Automated loading and hauling experiences at De Beers Finsch Mine, Proc. 10th AusIMM Underground Operators' Conference (2010) pp. 231–238
Google Scholar
J.A. Marshall, P.F. Murphy, L.K. Daneshmend: Toward Autonomous Excavation of Fragmented Rock: Full-Scale Experiments, IEEE Trans. Autom. Sci. Eng. 5(3), 562–566 (2008)
CrossRef
Google Scholar
S. Singh: Synthesis of Tactical Plans for Robotic Excavation, Ph.D. Thesis (Robotics Institute Carnegie Mellon Univ., Pittsburgh 1995)
Google Scholar
Q. Ji, R.L. Sanford: Autonomous excavation of fragmented rock using machine vision. In: Emerging Computer Techniques for the Minerals Industry, ed. by B.J. Schneider, D.A. Stanley, C.L. Karr (SME, Littleton 1993) pp. 221–228
Google Scholar
M.K. Petty, J. Billingsley, T. Tran-Cong: Autonomous LHD Loading, Proc. Annu. IEEE Conf. Mechatron. Mach. Vis. Pract. (1997) pp. 219–224
Google Scholar
H. Takahashi, M. Hasegawa, E. Nakano: Analysis on the resistive forces acting on the bucket of a Load-Haul-Dump machine and a wheel loader in the scooping task, Adv. Robotics 13(2), 97–114 (1999)
CrossRef
Google Scholar
M. Magnusson, H. Almqvist: Consistent pile-shape quantification for autonomous wheel loaders, Proc. 2011 IEEE/RSJ Int. Conf. Intell. Robots Syst. (2011) pp. 4078–4083
CrossRef
Google Scholar
A. Hemami: Fundamental analysis of automatic excavation, J. Aerosp. Eng. 8(4), 175–179 (1995)
MathSciNet
CrossRef
Google Scholar
G.W. Mitchell: Longwall mining. In: Australian Coal Mining Practice, ed. by R.J. Kininmouth, E.Y. Baafi (AIMM, Carlton 2005) pp. 340–375
Google Scholar
P.B. Reid, M.T. Dunn, D.C. Reid, J.C. Ralston: Real-world automation: New capabilities for underground longwall mining, Proc. Austr. Conf. Robotics Autom. (2010)
Google Scholar
A. Bonchis, E. Duff, J. Roberts, M. Bosse: Robotic explosive charging in mining and construction applications, IEEE Trans. Autom. Sci. Eng. (2013)
Google Scholar
D.J. Peterson, T. LaTourette: New Forces at Work in Mining: Industry Views of Critical Technologies (RAND Sci. Techn. Policy Inst., Santa Monica 2001)
Google Scholar
J. Peck, J. Gray: The total mining system (TMS): The basis for open pit automation, CIM Bull. 88(993), 38–44 (1995)
Google Scholar
G. Schaffer, A. Stentz: Automated Surveying of Mines Using a Laser Rangefinder, Emerg. Comp. Techn. Miner. Ind. Symp. (SME) (1993) pp. 363–370
Google Scholar
A. Nuchter, H. Surmann, K. Lingemann, J. Hertzberg, S. Thrun: 6D SLAM with an application in autonomous mine mapping, Proc. 2004 IEEE Int. Conf. Robotics Autom. (2004) pp. 1998–2003
Google Scholar
S. Thrun, D. Hahnel, D. Ferguson, D. Montemerlo, R. Triebel, W. Burgard, C. Baker, Z. Omohundro, S. Thayer, W. Whittaker: A system for volumetric robotic mapping of abandoned mines, Proc. 2003 IEEE Int. Conf. Robotics Autom. (2003) pp. 4270–4275
Google Scholar
D. Silver, D. Ferguson, A. Morris, S. Thayer: Topological exploration of subterranean environments, J. Field Robotics 23(6/7), 395–415 (2006)
CrossRef
Google Scholar
M. Magnusson, A. Lilienthal, T. Duckett: Scan registration for autonomous mining vehicles using 3D-NDT, J. Field Robotics 24(10), 803–827 (2007)
CrossRef
Google Scholar
R. Zlot, M. Bosse: Efficient large-scale 3D mobile mapping and surface reconstruction of an underground mine, Proc. Int. Conf. Field Serv. Robotics (2012)
Google Scholar
Garmin Ltd.: What is GPS?, http://www.garmin.com/aboutGPS/ (1996)
F. van Diggelen: Indoor GPS theory and implementation, Proc. IEEE Position Loc. Navig. Symp. (2002) pp. 240–247
Google Scholar
H. Niwa, K. Kodaka, Y. Sakamoto, M. Otake, S. Kawaguchi, K. Kujii, Y. Kanemori, S. Sugano: GPS-based indoor positioning system with multi-channel pseudolite, Proc. IEEE Int. Conf. Robotics Autom. (2008) pp. 905–910
Google Scholar
U. Artan, J.A. Marshall, N.J. Lavigne: Robotic mapping of underground mine passageways, Trans. IMM A: Min. Technol. 120(1), 18–24 (2011)
Google Scholar
E. Bartsch, M. Laine, M. Anderson: The application and implementation of optimized mine ventilation on demand (OMVOD) at the Xstrata Nickle Rim South Mine, Sudbury, Ontario, Proc. 13th U.S./N. Am. Mine Venti. Symp. (2010) pp. 1–15
Google Scholar
J.C. Ralston, C.O. Hargrave, D.W. Hainsworth: Localisation of mobile underground mining equipment using wireless ethernet, Proc. Ind. Appl. Conf. (2005) pp. 225–230
Google Scholar
M.M. Atia, A. Noureldin, J. Georgy, M. Korenberg: Bayesian filtering based WiFi/INS integrated navigation solution for GPS-denied environments, Navigation 58(2), 111–125 (2011)
CrossRef
Google Scholar
R. Wenger: La balise de positionnement U-GPS (Underground-GPS), ISSKA Rapport Annuel (Swiss Institute for Speleology and Karst Studies, La Chaux-de-Fonds 2004), pp. 13–14
Google Scholar
J. Chadwick: GPS for underground operations: Great potential for controlling
block caves, saving trapped miners and machine automation,
http://www.mining.com (2008)
J.A. Marshall: Navigating the advances in underground navigation, CIM Mag. 5(4), 20–21 (2010)
Google Scholar
N.J. Lavigne, J.A. Marshall: A landmark-bounded method for large-scale underground mine mapping, J. Field Robotics 29(6), 861–879 (2012)
CrossRef
Google Scholar
D. Lynas, T. Horberry: Human factor issues with automated mining equipment, Ergonomics Open J. 4, 74–80 (2011)
CrossRef
Google Scholar
IREDES: IREDES – International rock excavation data exchange standard, http://www.iredes.org/ (2013)
International Standards Organisation: ISO/NP 17757 earth-moving machinery – Autonomous machine safety, http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=60473 (2012)
D. Hambling: Next-Gen coal mining rescue robot, popular mechanics, http://www.popularmechanics.com/science/energy/coal-oil-gas/next-gen-coal-mining-rescue-robot (2010)
R.R. Murphy, J. Kravitz, S. Stover, R. Shoureshi: Mobile robots in mine rescue and recovery, IEEE Robotics Autom. Mag. 16(2), 91–103 (2009)
CrossRef
Google Scholar
D.W. Hainsworth: Teleoperation user interfaces for mining robotics, Auton. Robots 11(1), 19–28 (2001)
MATH
CrossRef
Google Scholar
A. MacDonald, E. Welsch: Robotics advance ocean floor mining ventures, http://search.proquest.com/docview/1018567281 (2012)
Nautilus Minerals: Fact sheet, http://www.nautilusminerals.com/i/pdf/Factsheet-Q1-2013.pdf (2013)
M. Dunbabin, P. Corke, G. Winstanley, J. Roberts: Off-world robotic excavation for large-scale habitat construction
and resource extraction, to boldly go where no human-robot team has gone before, AAAI Spring Symp. (2006)
Google Scholar
J.E. Moores, R. Francis, M. Mader, G.R. Osinski, T. Barfoot, N. Barry, G. Basic, M. Battler, M. Beauchamp, S. Blain, M. Bondy, R.-D. Capitan, A. Chanou, J. Clayton, E. Cloutis, M. Daly, C. Dickinson, H. Dong, R. Flemming, P. Furgale, J. Gammel, N. Gharfoor, M. Hussein, R. Grieve, H. Henrys, P. Jaziobedski, A. Lambert, K. Leung, C. Marion, E. McCullough, C. McManus, C.D. Neish, H.K. Ng, A. Ozaruk, A. Pickersgill, L.J. Preston, D. Redman, H. Sapers, B. Shankar, A. Singleton, K. Souders, B. Stenning, P. Stooke, P. Sylvester, L. Tornabene: A mission control architecture for robotic lunar sample return as field tested in an analogue deployment to the sudbury impact structure, Adv. Space Res. 50(12), 1666–1686 (2012)
CrossRef
Google Scholar